# Communications protocol A simple text-based protocol is used. Commands are sent to the SMD4, checked and executed, and a response returned. Data are buffered on receipt and commands are evaluated and executed on a first in first out basis. Although not a requirement, it is usually easiest to send a command and evaluate the response before sending the next command. Commands are in the form (Note that angle brackets are shown for clarity only, they are not part of the protocol): `
,,,` And responses are in the form: `
,,,,,` If the command executed successfully, or: `
,,,` If the command failed to execute correctly. Where:
Item Description
*<address prefix>* **Optional** prefix included when multiple SMD4s exist on the same bus. If not using addressing can be omitted.
<mnemonic> Short sequence of characters representing a command, case insensitive
<argument n> Zero or more command arguments
<data n> Zero or more response data items
<error code> An error code, see section [Error Codes](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-error-codes). This includes both a number and text description of the error to aid when using the SMD4 via a terminal program.
<SFLAGS> Set of flags representing the status of the SMD4, such as the state of the limit inputs or whether the joystick is connected. See section [Status Flags](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-status-flags-%28sflags)
<EFLAGS> Set of flags representing the error state of the SMD4, such as invalid mnemonic, or motor over-temperature fault.
<CR><LF> Message terminator; carriage return followed by line-feed (0x0D,0x0A)
### **Addressing** This section is only applicable where multiple SMD4s are connected together on the same bus, using the serial interface in either RS232 or RS485 mode. The addressing logic described in this section works for all interfaces, but is redundant for USB and the network interface since those inherently implement addressing. When multiple SMD4s exist on the same bus, a mechanism is required to allow them to be addressed uniquely or as a group. Likewise, only one device must use the bus at a time otherwise bus contention results when more than one device tries to drive the bus at a time. This is accomplished via the address prefix, which is the at '@' symbol followed by a numeric address: - 0 = Broadcast address, all SMD4s execute the command, but no response is sent - 1 to 247 = Valid secondary address range. The addressed SMD4 executes the command and returns a response - Any address outside this range is invalid, and the packet is silently ignored Upon receipt of the first complete packet with an address prefix, the SMD4 enters addressing mode, and behaviour then changes as follows, until restart. - Malformed packets are silently ignored. This includes any packet that does not include the addressing prefix but that is otherwise valid. - Broadcast packets are silently parsed and executed. A response is not sent, and as such it cannot be determined whether the command executed successfully without submitting a further query addressed directly to the target SMD4. - Packets that are otherwise correctly formed but having a target address that does not match that of the SMD4 are silently ignored. ### **Comma separation** All elements are comma-separated, except for the message terminator which immediately follows the last item. A response is always sent on receipt of a message terminator except where addressing criteria are not met. If an argument was supplied with a command, for example, to set a value, the value set will be returned in the response and serves as an additional confirmation of the command having executed as expected. Many commands accept a real number argument when the underlying quantity is an integer, or finite set of real numbers. In this case, the supplied value being otherwise acceptable is rounded to the closest integer or real number from the allowed set, and it is this value that is returned in the response. **No data items to return** If there are no data items as part of a response, only the SFLAGS and EFLAGS are returned. If an error occurred, then this will be reflected in the EFLAGS. ### Data types The SMD4 uses the following data types. Arguments sent to and from the SMD4 will be one of these types. Bracketed values are notes or converted values and not part of the data sent to or from the SMD4. Same applies to quotes.
TypeSMD4 acceptsSMD4 responds
INTInteger value, with or without sign: 100, -3, +7 Sign only included for negative numbers: 200, -3, 7
UINTUnsigned integer value, no sign: 0, 7, 1000 Hexadecimal format is also accepted: 0x38e3 (14,563) 0x005F (95) Unsigned integer value, no sign: 100, 200 Status and error flags are returned in upper case 2-byte hexadecimal format, E.g. 0x1234, 0xA4DE
FLOATReal number, with or without sign: 100, 34.5, 89.234234 Scientific format may also be used: 100e-3, 2.454E+1, 2e+3 Scientific format, with variable places after the decimal point and a 2-digit exponent: 1.23000E+04, 5.761592342E-06
STRINGASCII string, consisting of characters 0x20 to 0x7E inclusive: "hello", "1234 abc"
BOOLBinary, true/false value: 0, 1
DOTTED DECIMALIPV4 address or mask, four numbers separated by dots: "192.168.0.1", "255.255.255.255"
MAC12 hexadecimal characters grouped into pairs separated by a colon: "44:b7:d0:c7:16:75"
OTHERThe data type is described in the command reference section
### Flags Flags are reported by the device in hexadecimal format as explained above. E.g. a value of 0x0002 means bit 1 is set. The value of reserved flags is undefined and no particular value should be assumed. #### Error flags (EFLAGS) These indicate error conditions and are latching (i.e. remain set even after the error condition that caused them no longer persists). Reset the fault using the clear command, or the reset fault input. The motor is disabled if one or more error flags are set.
Bit Name Description
0Temperature sensor shortSelected temperature sensor is short-circuited (Not applicable to Thermocouple)
1Temperature sensor openSelected temperature sensor is open circuit
2Motor over temperatureSelected temperature sensor is reporting temperature > 190 °C and power has been removed from the motor to protect the windings
3Motor shortMotor phase to phase or phase to ground short has been detected
4External disableMotor disabled via external input
5Emergency stopMotor disabled via software
6Configuration errorMotor configuration is corrupted
7Reserved 7
8Reserved 8
9SDRAMMemory self-test failed
10Reserved 10
11Reserved 11
12Reserved 12
13Reserved 13
14Reserved 14
15Motion control faultOne or more motion control features (EPC, ROML etc.) are in a fault state
#### Status flags (SFLAGS)
Bit Name Description
0 Joystick connectedJoystick is connected (determined via state of the
1 Limit negativeLimit input is active (Note that the polarity is configurable, so active can mean high or low signal level)
2 Limit positiveLimit input is active (Note that the polarity is configurable, so active can mean high or low signal level)
3 External enableExternal enable input state
4 IdentIdent mode is active, green status indicator is flashing to aid in identifying device
5 EPC activityEndpoint correction activity indicator; on when this feature is busy
6ROML activityRange of motion limiter activity indicator; true when this feature is busy
7 StandbyMotor stationary. Check this bit before performing a function that requires the motor to be stopped first, such as changing mode
8 BakingBake mode running
9 Target Velocity ReachedSet when the motor is at target velocity
10 GUARD activityGuard activity indicator; true when this feature is busy
11 Boost OperationalInternal 48 V to 67 V boost supply is operational
12 Boost disable jumperBoost supply disable jumper is fitted
13 Boost UVLOBoost supply is disabled because input voltage is too low (< 48 V approx.)
14 Reserved 14
15 Motion control warningOne or more motion control features (EPC, ROML etc.) are in a warning state
#### Error codes
Error Description
-1 (Stop motor first) Several actions, such as changing resolution or operating mode require that the motor is stopped first. Trying to run such a command before the motor has come to a stop and the standby flag in the status register is set will result in this error.
-2 (Argument validation) An argument supplied to the command is invalid, for example, it is outside the allowable range.
-3 (Unable to get) The command is write-only, read is not valid. This applies to commands such as stop, where read would have no meaning.
-5 (Action failed) The command failed to execute due to an internal error, for example, the internal flash in which settings are stored has reached the end of life and data cannot be reliably written to it.
-6 (Not possible in mode) The command is not applicable to this mode, for example, trying to start bake when not in bake mode.
-7 (Not possible when motor disabled) The motor is disabled (due to a fault, or external enable) and the command is one that starts motion.
-101 (Argument type) The argument is of the wrong type, for example a non-integer value was given where an integer value was required.
-102 (Argument count) The argument count is incorrect, either too few or too many arguments have been supplied.
-103 (Invalid Mnemonic) Command mnemonic is not valid
-104 (Packet error) Packet is malformed
### Quick reference #### Bake
Mnemonic Description R W Type
[BAKE:ELAPSED](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-bake%3Aelapsed-%E2%80%93-elaps) Elapsed bake time in format h:mm:ss STRING
[BAKE:RUN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-bake%3Arun-%E2%80%93-start-bak) Start bake
[BAKE:T](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-baket-%E2%80%93-bake-tempera) Bake temperature setpoint UINT
#### Boost
Mnemonic Description R W Type
[BOOST:EN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-boost%3Aen-%E2%80%93-boost-ena) Boost enableBOOL
[BOOST:JUMPER](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-boost%3Ajumper-%E2%80%93-boost) Check if boost disable PCB jumper is fitted BOOL
#### Coms
Mnemonic Description R W Type
[COMS:NET:DHCP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Anet%3Adhcp-%E2%80%93-dhcp) DHCP enableBOOL
[COMS:NET:GATEWAY](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Anet%3Agateway-%E2%80%93-g) Gateway addressDOTTED DECIMAL
[COMS:NET:IP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Anet%3Aip-%E2%80%93-ip-add) IP addressDOTTED DECIMAL
[COMS:NET:IPCONF](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Anet%3Aipconf-%E2%80%93-ge) Summary of network configuration in human readable form STRING
[COMS:NET:LINK](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Anet%3Alink-%E2%80%93-get-) Ethernet interface link is up BOOL
[COMS:NET:MAC](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Anet%3Amac-%E2%80%93-get-m) Ethernet interface MAC address MAC
[COMS:NET:NETMASK](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Anet%3Anetmask-%E2%80%93-s) Ethernet subnet maskDOTTED DECIMAL
[COMS:SERIAL:BAUD](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Aserial%3Abaud-%E2%80%93-b) Serial baud rateUINT
[COMS:SERIAL:MODE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Aserial%3Amode-%E2%80%93-r) Serial coms mode, RS232 or 485UINT
[COMS:SERIAL:RS485DEL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Aserial%3Ars485del) RS485 turnaround delayUINT
[COMS:SERIAL:SLAVEADDR](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Aserial%3Aslaveadd) Slave addressUINT
[COMS:SERIAL:TERM](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-coms%3Aserial%3Aterm-%E2%80%93-t) Enable RS485 line terminationBOOL
#### Encoder
Mnemonic Description R W Arguments
[ENC:BSN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Absn-%E2%80%93-board-seri)Encoder board serial number STRING
[ENC:DAT](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Adat-%E2%80%93-encoder-re)Encoder readout data OTHER
[ENC:DPC](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Adpc-%E2%80%93-displaceme)Encoder displacement per countFLOAT
[ENC:FLIP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Aflip%E2%80%93-flip)Reverse encoder directionBOOL
[ENC:FLIP:AUTOSET](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Aflip%3Aautoset---a)Auto configure flip
[ENC:FW](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Afw---firmware-ve)Encoder firmware version STRING
[ENC:INC:LIMITS:EN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Ainc%3Alimits%3Aen---)Enable incremental PQ limitsBOOL
[ENC:INC:LIMITS:P:EN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Ainc%3Alimits%3Ap%3Aen-)Enable incremental P limitBOOL
[ENC:INC:LIMITS:Q:EN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Ainc%3Alimits%3Aq%3Aen-)Enable incremental Q limitBOOL
[ENC:INC:LIMITS:STOPMODE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Ainc%3Alimits%3Astopm)Incremental PQ limits stop modeUINT
[ENC:INC:LIMITS:SWAP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Ainc%3Alimits%3Aswap-)Incremental swap P and QBOOL
[ENC:INC:RSTZ](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Ainc%3Arstz---incre)Incremental reset the Z counter
[ENC:OFS](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Aofs---offset)Encoder readout offsetFLOAT
[ENC:SEL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Asel---selection)Select absolute or incremental encoder
[ENC:USEINCE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-enc%3Auseince---use-in)Incremental use the E (error) signal
#### Limit inputs
Mnemonic Description R W Arguments
[LIMIT:EN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-l-%E2%80%93-limits-global-en) Global enable BOOL
[LIMIT:EN+](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-limit%3Aen-%2C-limit%3Aen%2B) Limit positive (Limit 1) enable BOOL
[LIMIT:EN-](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-limit%3Aen-%2C-limit%3Aen%2B) Limit negative (Limit 2) enable BOOL
[LIMIT:POL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lp-%E2%80%93-global-limit-po) Limit polarity for both Limit positive (Limit 1) and negative (Limit 2), (0 for active high, 1 for active low) BOOL
[LIMIT:POL+](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lp%2B%2C-lp--individual-) Limit n polarity (0 for active high, 1 for active low) BOOL
[LIMIT:POL-](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lp%2B%2C-lp--individual-) Limit n polarity (0 for active high, 1 for active low) BOOL
[LIMIT:STOPMODE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-lsm-%E2%80%93-limit-stop-mod) How to stop on limit being triggered BOOL
#### Motion control
Mnemonic Description R W Arguments
[MCON:ESTOP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-estop-%E2%80%93-emergency-st) Emergency stop. Stops the motor immediately
[MCON:MPRESET](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Ampreset---mech-) Mechanism presets UINT
[MCON:NUDGE:RUN:NEG](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Anudge%3Arun%3Aneg-%E2%80%93) Execute negative nudge
[MCON:NUDGE:RUN:POS](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Anudge%3Arun%3Apos-%E2%80%93) Execute positive nudge
[MCON:NUDGE:VALUE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Anudge%3Avalue---n) Nudge distance FLOAT
[MCON:RUNA](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runa-%E2%80%93-run%2C-absolute) Move motor absolute positioning mode INT
[MCON:RUNH](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-motor%3Arunh---run%2C-ho) Start home mode procedure STRING
[MCON:RUNR](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runr---run%2C-relative) Move motor relative positioning mode INT
[MCON:RUNV](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-%C2%A0-6) Move motor velocity mode STRING
[MCON:SF:EPC](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aepc---closed) Closed loop (Endpoint Correction, EPC) behaviourUINT
[MCON:SF:EPC:N](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aepc%3An%3A---clo)Closed loop (Endpoint Correction, EPC) maximum iterationsUINT
[MCON:SF:EPC:T](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aepc%3At%3A---clo) Closed loop (Endpoint Correction, EPC) toleranceFLOAT
[MCON:SF:GUARD](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aguard---guar) Guard behaviourUINT
[MCON:SF:GUARD:1](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aguard%3An---gu) Guard value oneFLOAT
[MCON:SF:GUARD:2](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aguard%3An---gu) Guard value twoFLOAT
[MCON:SF:ROML](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aroml--range-) Range of motion limiter behaviourUINT
[MCON:SF:ROML:1](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aroml%3An---ran) Range of motion limiter value oneFLOAT
[MCON:SF:ROML:2](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aroml%3An---ran) Range of motion limiter value twoFLOAT
[MCON:SF:ROML:J](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Asf%3Aroml%3Aj---ran) Range of motion limiter, enable for step direction modeBOOL
[MCON:SSTOP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sstop-%E2%80%93-stop-motor-i) Stop motor in 1 second on full step position independently of the current motion profile
[MCON:STOP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-stop-%E2%80%93-stop-motor) Bring motor to a stop according to the current profile
[MCON:U](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Au---displacemen) Mechanism displacement per stepFLOAT
[MCON:ZEROA](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Azeroa-%E2%80%93-zero-ab) Zero the absolute counter
[MCON:ZEROAR](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Azeroar-%E2%80%93-zero-a) Zero absolute and relative counters
[MCON:ZEROR](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mcon%3Azeror-%E2%80%93-zero-re)Zero relative counter
#### Motor
Mnemonic Description R W Arguments
[MOTOR:AMAX](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-amax---acceleration) Acceleration in Hz/s FLOAT
[MOTOR:DMAX](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-dmax---deceleration) Deceleration in Hz/s FLOAT
[MOTOR:EDGE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-edge-%E2%80%93-edge-to-step-) Which edges of step input to generate a step on UINT
[MOTOR:F](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-f-%E2%80%93-freewheel-mode) Freewheel mode UINT
[MOTOR:IA](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ia-%E2%80%93-acceleration-cu) Acceleration current in amps FLOAT
[MOTOR:IH](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%E2%80%93-hold-current) Hold current in amps FLOAT
[MOTOR:IHD](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%E2%80%93-current-reduct) Delay per current reduction step FLOAT
[MOTOR:INTERP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-interp-%E2%80%93-step-interp) Interpolate step input to 256 micro steps BOOL
[MOTOR:IR](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ir-%E2%80%93-run-current) Run current in amps FLOAT
[MOTOR:PACT](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pact-%E2%80%93-actual-positi) Actual position FLOAT
[MOTOR:PDDEL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%E2%80%93-power-down-d) Power down delay in milliseconds FLOAT
[MOTOR:PREL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-prel-%E2%80%93-relative-posi) Relative position FLOAT
[MOTOR:RES](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-%C2%A0-24) Resolution UINT
[MOTOR:SDMODE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-motor%3Asdmode---step%2F) Step/direction mode UINT
[MOTOR:T](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-tmot-%E2%80%93-motor-tempera) Temperature in °C UINT
[MOTOR:THIGH](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-thigh-%E2%80%93-microstep-tr) Full step – micro stepping transition FLOAT
[MOTOR:TSEL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-tsel-%E2%80%93-temperature-s) Temperature sensor selection, T/C or RTD UINT
[MOTOR:TZW](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-tzw-%E2%80%93-zero-wait-time) Time to stop before moving again in seconds FLOAT
[MOTOR:VACT](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vact-%E2%80%93-actual-freque) Actual motor velocity FLOAT
[MOTOR:VMAX](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vmax-%E2%80%93-step-frequenc) Target motor velocity FLOAT
[MOTOR:VSTART](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstart-%E2%80%93-start-frequ) Start velocity FLOAT
[MOTOR:VSTOP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstop-%E2%80%93-stop-frequen) Stop velocity FLOAT
#### General
Mnemonic Description R W Arguments
[SYS:BSN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Absn-%E2%80%93-get-mother) Get main board serial number STRING
[SYS:CLR](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aclr-%E2%80%93-clear-faul) Clear error flags
[SYS:EXTEN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk--4) External enable used BOOL
[SYS:FLAGS](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aflags-%E2%80%93-get-stat) Get status and error flags
[SYS:FLAGSV](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aflagsv-%E2%80%93-get-sta) Get human readable summary of status and error flags STRING
[SYS:FW](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Afw-%E2%80%93-get-firmwar) Read main board firmware version number STRING
[SYS:IDENT](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ident---blinks-statu) Set the status indicator flashing to help identify the device BOOL
[SYS:JS:EN](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-%C2%A0-15) Enable or disable the joystick input BOOL
[SYS:JS:MODE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-jsmode-%E2%80%93-joystick-mo) Joystick mode UINT
[SYS:LOAD](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aload-%E2%80%93-load-last) Load saved configuration
[SYS:LOADFD](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aloadfd-%E2%80%93-load-fa) Load factory default settings
[SYS:MODE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mode---choose-mode-o) Mode of operation UINT
[SYS:NAME](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Apsn-%E2%80%93-get-produc) Device name tag STRING
[SYS:PROG](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aprog-%E2%80%93-enter-pro) Enter programming mode
[SYS:RESET](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Areset%E2%80%93-restart-t) Restart the SMD4
[SYS:SER](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aser-%E2%80%93-get-produc)Product serial number STRING
[SYS:STORE](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Astore)Store settings
[SYS:UNITS](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Aunits)Get or set the measurement unitUINT
[SYS:UPTIME](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Auptime-%E2%80%93-get-upt)Get the uptime in milliseconds UINT
[SYS:UUID](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-sys%3Auuid-%E2%80%93-get-uuid)Get a the products UUID (Universally Unique ID) STRING
### Command reference In the examples red text is data transmitted to the SMD4, and blue text is data received from the SMD4. // Green text preceded by a double forward slash is a comment relating to that data. Arguments where present are given as an argument name in angle brackets. #### Bake ##### BAKE:RUN – Start bake Start bake. Configure the bake temperature setpoint using [BakeTemperature](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-baket-%E2%80%93-bake-tempera).
Command:**BAKE:RUN**<CR><LF>
**Examples**
BAKE:RUN<CR><LF> 0x0000,0x0000<CR><LF> // Run bake
##### BAKE:ELAPSED – Elapsed bake time Gets the elapsed bake time.
Query:**BAKE:ELAPSED**<CR><LF>
Response:<duration>
**Data****Type****Description
durationSTRINGElapsed time in format h:mm:ss, where h is hours, m minutes and s seconds.
Tx: BAKE:ELAPSED<CR><LF> Rx: 0x0000,0x0000,2:34:12<CR><LF> // Bake has run for 2 hours 34 minutes and 12 seconds
##### BAKE:T – Bake temperature setpoint Gets or sets the bake temperature setpoint. To run bake, select bake mode using the [MODE,](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-mode---choose-mode-o) then start bake using the run bake command. Use stop command to end bake.
Command:**BAKE:T,**<setpoint><CR><LF>** **
Query:**BAKE:T** <CR><LF>
Response:<setpoint>
**Data****Type****Description
setpointUINT\[Default: 150 °C\] Min. 0 °C Max. 200 °C
**Examples**
BAKE:T,100<CR><LF> 0x0000,0x0000,100<CR><LF> BAKE:T<CR><LF> 0x0000,0x0000,100<CR><LF> // Set bake setpoint to 100 °C // Query
#### Boost ##### BOOST:EN – Boost enable Gets or sets a value indicating whether the boost supply should be enabled. The boost supply steps up the input voltage from 48 V to 67 V to maximise motor dynamic performance. Enable for best performance. Regardless of this setting, the boost supply is disabled when input voltage falls below 48 V, and or the boost disable jumper is fitted.
Command:**BOOST:EN,**<state><CR><LF>
Query:**BOOST:EN** <CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disable \[1: Enable\]
**Examples**
BOOST:EN,1<CR><LF> 0x0000,0x0000,1<CR><LF> BOOST:EN<CR><LF> 0x0000,0x0000,1<CR><LF> // Enable boost // Query
##### BOOST:JUMPER – Boost disable PCB jumper Gets a value indicating whether the boost supply disable jumper is fitted. If the jumper is fitted, the boost supply is disabled and the maximum voltage supplied to the motor will equal the input voltage to the SMD4. This will compromise motor dynamic performance.
Query:**BOOST:JUMPER** <CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Jumper is not fitted, boost supply is enabled provided input voltage criteria met 1: Jumper is fitted, boost supply is disabled
#### Coms: Network ##### COMS:NET:DHCP – DHCP Gets or sets a value indicating whether DHCP is enabled. If enabled, DHCP (Dynamic Host Configuration Protocol) will be used to automatically assign network configuration, such as IP address and gateway, to the device.
Command:**COMS:NET:DHCP,**<state><CR><LF>
Query: **COMS:NET:DHCP**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disable \[1: Enable\]
**Examples**
COMS:NET:DHCP,1<CR><LF> 0x0000,0x0000,1<CR><LF> COMS:NET:DHCP<CR><LF> 0x0000,0x0000,1<CR><LF> // Enable DHCP // Query
##### COMS:NET:GATEWAY – Gateway Gets or sets the gateway address. When DHCP is enabled, the value read back will be the value assigned by DHCP rather than any value you might have set. Any value set however is retained, and will apply if DHCP is disabled at a later time.
Command:**COMS:NET:GATEWAY,**<address><CR><LF>
Query:**COMS:NET:GATEWAY**<CR><LF>
Response:<address>
**Data****Type****Description**
addressDOTTED DECIMALGateway address
**Examples**
COMS:NET:DHCP<CR><LF> 0x0000,0x0000,1<CR><LF> COMS:NET:GATEWAY,192.168.1.1<CR><LF> 0x0000,0x0000,10.0.96.1<CR><LF> COMS:NET:DHCP,0<CR><LF> 0x0000,0x0000,0<CR><LF> COMS:NET:GATEWAY<CR><LF> 0x0000,0x0000,192.168.1.1<CR><LF> // Query DHCP state and find that it's enabled // Set the gateway; the returned value is that assigned by DHCP // not the value we just set // Turn DHCP off // Query gateway again // Now DHCP is off, our assigned gateway value is used
##### COMS:NET:IP – IP Address Gets or sets the IP address. When DHCP is enabled, the value read back will be the value assigned by DHCP rather than any value you might have set. Any value set however is retained, and will apply if DHCP is disabled at a later time.
Command:**COMS:NET:IP,**<address><CR><LF>
Query:**COMS:NET:IP**<CR><LF>
Response:<address>
**Data****Type****Description**
addressDOTTED DECIMALIP address
**Examples**
Tx: COMS:NET:IP<CR><LF> Rx: 0x0000,0x0000,10.0.97.70<CR><LF> // Query the IP address
##### COMS:NET:IPCONF – Get network config summary Outputs a summary of network configuration in human readable form.
Query:**COMS:NET:IPCONF**<CR><LF>
Response:<summary>
**Data****Type****Description**
summarySTRINGASCII table summarizing the network configuration, see example.
**Examples**
Tx: COMS:NET:IPCONF<CR><LF> Rx: 0x0000,0x0000,<CR><LF> Ethernet interface:<CR><LF> IPv4 Address. . . . . . . . . . . :10.0.97.70<CR><LF> Subnet Mask . . . . . . . . . . .:255.255.248.0<CR><LF> Default Gateway . . . . . . . :10.0.96.1<CR><LF> DHCP State. . . . . . . . . . . . :Enabled<CR><LF>
##### COMS:NET:LINK – Get link up status Gets a value indicating whether the ethernet interface link is up. This will read back as false when the LAN connector is unplugged for example. **Examples**
Tx: COMS:NET:LINK<CR><LF> Rx: 0x0000,0x0000,1<CR><LF> // Query // Link is up
##### COMS:NET:MAC – Get MAC address Gets the Ethernet interface MAC address.
Query:**COMS:NET:MAC**<CR><LF>
Response:<mac>
**Data****Type****Description**
macMACMAC address, 12 hexadecimal characters grouped into pairs separated by a colon, for example "44:b7:d0:c7:16:75"
**Examples**
Tx: COMS:NET:MAC<CR><LF> Rx: 0x0000,0x0000,44:b7:d0:c7:16:75<CR><LF> // Query
##### COMS:NET:NETMASK – Subnet mask Gets or sets the subnet mask. When DHCP is enabled, the value read back will be the value assigned by DHCP rather than any value you might have set. Any value set however is retained, and will apply if DHCP is disabled at a later time.
Command:**COMS:NET:NETMASK,**<mask><CR><LF>
Query:**COMS:NET:NETMASK**<CR><LF>
Response:<mask>
**Data****Type****Description**
maskDOTTED DECIMALMask
COMS:NET:NETMASK<CR><LF> 0x0000,0x0000,255.255.248.0<CR><LF> // Query
#### Coms: Serial ##### COMS:SERIAL:BAUD – Baud rate Gets or sets the baud rate.
Command:**COMS:SERIAL:BAUD,**<baud>**<CR><LF>**
Query:**COMS:SERIAL:BAUD**<CR><LF>
Response:<baud>
**Data****Type****Description
baudUINTBaud rate: 4800 9600 14400 19200 38400 57600 \[115200\] 230400 460800 921600
**Examples**
COMS:SERIAL:BAUD,9600<CR><LF> 0x0000,0x0000,9600<CR><LF> COMS:SERIAL:BAUD<CR><LF> 0x0000,0x0000,9600<CR><LF> // Set 9600 baud // Query
##### COMS:SERIAL:MODE – RS232/RS485 mode selection Gets or sets the serial coms mode, either RS232 or RS485. Unplug from the host device before changing the mode.
Command:**COMS:SERIAL:MODE,**<mode><CR><LF>
Query:**COMS:SERIAL:MODE**<CR><LF>
Response:<mode>
**Data****Type****Description
modeUINT0: RS232 \[1: RS485\]
**Examples**
COMS:SERIAL:MODE,1<CR><LF> 0x0000,0x0000,1<CR><LF> COMS:SERIAL:MODE<CR><LF> 0x0000,0x0000,1<CR><LF> // Set RS485 mode // Query
##### COMS:SERIAL:RS485DEL – Turnaround delay Gets or sets a value in milliseconds specifying the delay to execute between receipt of a command from the host and the client (SMD4) sending the response. Applicable to RS485 mode only. The RS485 interface is half duplex (it can send or receive data, but cannot do both at once) and so by default is in the receive state. The interface switches to transmit mode when a command has been received, executed and a response is ready to send. The turnaround delay is used to insert an additional delay following execution of the command but preceding switching to transmit, to allow the host more time to switch into receive mode. Experiment with increasing this setting if you find that host receives a response with a portion missing from the start of the response, for example missing some or all of the status an error flags.
Command:**COMS:SERIAL:RS485DEL,**<delay><CR><LF>
Query:**COMS:SERIAL:RS485DEL**<CR><LF>
Response:<delay>
**Data****Type****Description
delayUINTDelay in milliseconds. Default: 0 Minimum: 0 Maximum: 1000
**Examples**
COMS:SERIAL:RS485DEL,10<CR><LF> 0x0000,0x0000,1<CR><LF> COMS:SERIAL:RS485DEL<CR><LF> 0x0000,0x0000,10<CR><LF> // Set delay of 10 ms // Query
##### COMS:SERIAL:SLAVEADDR – Slave address Gets or sets the slave address. Only applicable when addressing mode is used, see [addressing section](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-addressing).
Command:**COMS:SERIAL:SLAVEADDR,**<address><CR><LF>
Query:**COMS:SERIAL:SLAVEADDR**<CR><LF>
Response:<address>
**Data****Type****Description
addressUINTSlave address. Default: 1 Minimum: 1 Maximum: 247
**Examples**
Tx: COMS:SERIAL:SLAVEADDR,1<CR><LF> Rx: 0x0000,0x0000,1<CR><LF> Tx: COMS:SERIAL:SLAVEADDR<CR><LF> Rx: 0x0000,0x0000,1<CR><LF> // Disable termination // Query
##### COMS:SERIAL:TERM – Termination Gets or sets a value indicating whether RS485 line termination should be used. If enabled, a 120 termination resistance is placed between the RS485 A and B pins. See [section on termination](https://bookstack.vps-da8d40f3.arunmicro.com/link/27#bkmrk-rs232%2F485).
Command:**COMS:SERIAL:TERM,**<state><CR><LF>
Query: **COMS:SERIAL:TERM**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disable \[1: Enable\]
**Examples**
COMS:SERIAL:TERM,0<CR><LF> 0x0000,0x0000,0<CR><LF> COMS:SERIAL:TERM<CR><LF> 0x0000,0x0000,0<CR><LF> // Disable termination // Query
#### Encoder ##### ENC:BSN – Board serial number Gets the encoder board serial number. If the encoder module is not present an empty string is returned.
Query:**ENC:BSN**<CR><LF>
Response:<serial>
**Data****Type****Description**
serialSTRINGEncoder board serial number.
**Examples**
ENC:BSN<CR><LF> 0x0000,0x0000,1232492<CR><LF> // Query
##### ENC:DAT – Encoder readout Gets the latest data from the encoder. If the encoder module is not present, all values read as zero. Data relating to a particular type of encoder (incremental, or BiSS absolute) are only applicable when that type of encoder connected and otherwise are of undefined value.
Query:**ENC:DAT**<CR><LF>
Response:<flags>,<incremental ab count>,<incremental z count>,<absolute count>,<absolute position>,<absolute velocity>,<relative position>,<relative velocity>
**Data****Type****Description**
flagsUINTEncoder status flags. 16 bit value presented as an unsigned integer. The bits are: Bit Description 0: Incremental P limit signal 1: Incremental Q limit signal 2: Incremental E (error) signal 3: BiSS CRC error 4: BiSS warning 5: BiSS error 6: reserved 6 7: reserved 7 8: Installed 9: Online 10: reserved 10 11: reserved 11 12: reserved 12 13: reserved 13 14: reserved 14 15: reserved 15
incremental ab countINTIncremental encoder AB (position) count.
incremental z countUINTIncremental encoder Z (reference marker) count. The value increments once per transition, which means that the counter will increment by 2 if it passes cleanly over the reference mark in either direction.
absolute countINTAbsolute encoder count
absolute positionFLOATAbsolute position determined from the encoder. If the encoder is incremental then then the value is pseudo-absolute as explained <here>.
absolute velocityFLOATAbsolute velocity determined from the encoder
relative positionFLOATRelative position determined from the encoder.
relative velocityFLOATRelative velocity determined from the encoder.
**Examples**
ENC:DAT<CR><LF> 0x88c6,0x0000,888,7708795,128,0,5.00371093750000E+01,0.00000000000000E+00,5.00371093750000E+01,0.00000000000000E+00<CR><LF> // Query
##### ENC:DPC – Displacement per count Get or set the displacement per count, i.e. the distance represented by one encoder count.
Command:**ENC:DPC,**<dpc><CR><LF>
Query:**ENC:DPC**<CR><LF>
Response:<dpc>
**Data****Type****Description**
dpcFLOATDisplacement per count.
**Examples**
ENC:DPC<CR><LF> 0x0000,0x0000,50E-09<CR><LF> // The displacement per count is 50e-9. If this were a linear encoder and the units were meters, then this would mean 50 nm.
##### ENC:FLIP – Flip Gets or sets a value indicating whether the encoder readout should be flipped/inverted, such that positive is negative and vice versa. This is done internally by multiplying the encoder count by 1 when flip is disabled, and -1 when flip is enabled, and is applied as the last processing step (i.e. after offsets and other adjustments have been applied).
Command:**ENC:FLIP,**<state><CR><LF>
Query:**ENC:FLIP**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL\[0: Disable\] 1: Enable
**Examples**
ENC:FLIP<CR><LF> 0x0000,0x0000,0<CR><LF> // Flip is disabled
##### ENC:FLIP:AUTOSET - Autoset flip Starts a process that automatically determines the correct flip setting. This takes a few seconds and is done by moving the motor a small amount, checking the resulting encoder displacement and then changing the flip setting if required. The motor is moved back to its initial position when the process completed.
Command:**ENC:FLIP:AUTOSET**<CR><LF>
Response:
**Examples**
ENC:FLIP:AUTOSET<CR><LF> 0x0000,0x0000<CR><LF> // Autoset flip ran successfully
##### ENC:FW - Firmware version Gets the encoder module firmware version.
Query:**ENC:FW**<CR><LF>
Response:<version>
**Data****Type****Description**
versionSTRINGEncoder firmware version
**Examples**
ENC:FW<CR><LF> 0x0886,0x0000,24285.79<CR><LF> // Firmware version is 24285.79
##### ENC:INC:LIMITS:EN - Incremental PQ limits enable Gets or sets a value indicating whether incremental PQ limits should be enabled. PQ limits can be configured as desired with the other related settings, and this option used to enable or disable them.
Command:**ENC:INC:LIMITS:EN,**<state><CR><LF>
Query:**ENC:INC:LIMITS:EN**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL\[0: Disable\] 1: Enable
##### ENC:INC:LIMITS:P:EN - Incremental P limit enable Gets or sets a value indicating whether incremental P limit should be enabled.
Command:**ENC:INC:LIMITS:P:EN,**<state><CR><LF>
Query:**ENC:INC:LIMITS:P:EN**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL\[0: Disable\] 1: Enable
##### ENC:INC:LIMITS:Q:EN - Incremental Q limit enable Gets or sets a value indicating whether incremental Q limit should be enabled.
Command:**ENC:INC:LIMITS:Q:EN,**<state><CR><LF>
Query:**ENC:INC:LIMITS:Q:EN**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL\[0: Disable\] 1: Enable
##### ENC:INC:LIMITS:STOPMODE - Incremental PQ limits stop mode Gets or sets the incremental PQ limits stop mode.
Command:**ENC:INC:LIMITS:STOPMODE,**<mode><CR><LF>
Query:**ENC:INC:LIMITS:STOPMODE**<CR><LF>
Response:<mode>
**Data****Type****Description**
modeUINT\[0: Hard stop; the motor will stop immediately on a limit being triggered\] 1: Soft stop; the motor decelerates according to the profile
**Remarks** When using hard stop, keep in mind that steps may be lost depending on the slewing speed and load on the motor. Treat position counters with caution until the true position has been established. Conversely, when using soft stop, ensure that the motor can decelerate to a stop before the physical end of travel is reached and steps are lost. ##### ENC:INC:LIMITS:SWAP - Incremental PQ limits swap Gets or sets a value indicating whether the P and Q limits should be swapped. The standard configuration is for the P limit to be positioned at the end of the scale reached by the encoder count incrementing, and the Q limit the end of the scale reached by the encoder count decrementing. If this does not match your configuration, enable swap.
Command:**ENC:INC:LIMITS:SWAP,**<state><CR><LF>
Query:**ENC:INC:LIMITS:SWAP**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL\[0: Disable\] 1: Enable
##### ENC:INC:RSTZ - Incremental reset Z Reset the incremental counter Z count.
Command:**ENC:INC:RSTZ**<CR><LF>
##### ENC:OFS - Offset Gets or sets the encoder position offset. This value is summed with the raw encoder position to arrive at the final readout. Use this to set the encoder zero as desired.
Command:**ENC:OFS,**<offset><CR><LF>
Query:**ENC:OFS**<CR><LF>
Response:<offset>
**Data****Type****Description**
offsetFLOATOffset value.
##### ENC:SEL - Selection Gets or sets the encoder selection.
Command:**ENC:SEL,**<selection><CR><LF>
Query:**ENC:SEL**<CR><LF>
Response:<selection>
**Data****Type****Description**
selectionUINT\[0: None\] 1: Incremental 2: Absolute
##### ENC:USEINCE - Use incremental E signal Gets or sets a value indicating whether the incremental encoder E (error) signal should be used. Not all encoders have this signal so disable this option when that is the case.
Command:**ENC:USEINCE,**<state><CR><LF>
Query:**ENC:USEINCE**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disabled \[1: Enabled\]
#### Hardware limits ##### LIMIT:EN – Limits global enable Gets or sets global limit enable state. If this setting is false, limits are disabled regardless of the state of any other limits configuration item. This does not affect other limits configuration settings, allowing limits to be configured as desired, then globally enabled or disabled if required.
Command:**LIMIT:EN, **<state><CR><LF>
Query:**LIMIT:EN**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL\[0: Disabled\] 1: Enabled
**Examples**
LIMIT:EN,0<CR><LF> 0x0000,0x0000,0<CR><LF> LIMIT:EN<CR><LF> 0x0000,0x0000,0<CR><LF> // Disable limits globally // Query
##### LIMIT:EN-, LIMIT:EN+ Negative limit enable, positive limit enable Gets or sets the negative limit (corresponding to decrementing step counter), or positive limit (corresponding to incrementing step counter) enable.
Command:**LIMIT:ENx****,**<state><CR><LF>
Query:**LIMIT:ENx**<CR><LF>
Response:<state>
Where 'x' is '-' for negative or '+' for positive limit.
**Data****Type****Description**
stateBOOL\[0: Disabled\] 1: Enabled
**Examples**
LIMIT:EN+,1<CR><LF> 0x0000,0x0000,1<CR><LF> LIMIT:EN-<CR><LF> 0x0000,0x0000,1<CR><LF> // Set positive limit enable // Query negative limit enable state
##### LIMIT:POL – Global limit polarity Set the polarity for both limits at once.
Command:**LIMIT:POL,**<polarity><CR><LF>
Response:<polarity>
Where 'x' is '-' for negative or '+' for positive limit.
**Data****Type****Description**
polarityUINT\[0: Active high\] 1: Active low
**Examples**
Tx: LIMIT:POL,1<CR><LF> Rx: 0x0000,0x0000,1<CR><LF> // Set polarity of both limits to active low
##### LIMIT:POL-, LIMIT:POL+ Negative limit polarity, positive limit polarity Gets or sets the negative or positive limit polarity.
Command:**LIMIT:POLx,**<polarity><CR><LF>
Query:**LIMIT:POLx**<CR><LF>
Response:<state>
Where 'x' is '-' for negative or '+' for positive limit.
**Data****Type****Description**
polarityUINT\[0: Active high\] 1: Active low
**Examples**
LIMIT:POL-,1<CR><LF> 0x0000,0x0000,1<CR><LF> LIMIT:POL+<CR><LF> 0x0000,0x0000,1<CR><LF> // Set negative limit polarity to active low // Query positive limit polarity
##### LIMIT:STOPMODE – Limit stop mode Gets or sets the limits stop mode, which determines behaviour on limit being triggered.
Command:**LIMIT:STOPMODE,**<mode><CR><LF>
Query:**LIMIT:STOPMODE**<CR><LF>
Response:<mode>
**Data****Type****Description**
modeUINT\[0: Hard stop; the motor will stop immediately on a limit being triggered\] 1: Soft stop; the motor decelerates according to the profile
**Remarks** When using hard stop, keep in mind that steps may be lost depending on the slewing speed and load on the motor. Treat position counters with caution until the true position has been established. Conversely, when using soft stop, ensure that the motor can decelerate to a stop before the physical end of travel is reached and steps are lost. **Examples**
LIMIT:STOPMODE,1<CR><LF> 0x0000,0x0000,1<CR><LF> LIMIT:STOPMODE<CR><LF> 0x0000,0x0000,1<CR><LF> // Set soft stop mode // Query
#### Motion control ##### MCON:ESTOP – Emergency stop Stop motor immediately disregarding deceleration profile and disable the motor. This should not be relied on as a safety interlock.
Command:**MOTOR:ESTOP**<CR><LF>
**Remarks** The motor may stop on a fractional step position, but this is irrelevant as motor power is removed and the motor will snap to a full step position. Steps may be lost. **Examples**
MCON:ESTOP<CR><LF> 0x0000,0x0000<CR><LF> // Stop the motor immediately
##### MCON:MPRESET - Mech preset Apply a preset mechanism configuration. Drive properties including displacement per step, encoder and limits configuration will be set to suit the chosen mechanism. All AML standard mechanisms are available to chose from. Notice that the response is always 0, for both command and query. New presets will be added via firmware update as new mechanisms are released. Presets are discussed <here>.
Command:**MCON:MPRESET,**<preset><CR><LF> ** ** ** **
Query:**MCON:MPRESET**<CR><LF> ** ** ** **
Response:<0>
**Data****Type****Description
presetUINT0: None 1: VSM17-X-050 2: VSM17-X-100 3: VSM17-X-150 4: VSM17-X-200 5: VSM17-X-050-HR 6: VSM17-X-100-HR 7: VSM17-X-150-HR 8: VSM17-X-200-HR 9: VSM17-X-050-LS 10: VSM17-X-100-LS 11: VSM17-X-150-LS 12: VSM17-X-200-LS 13: VSM17-X-050-HR-LS 14: VSM17-X-100-HR-LS 15: VSM17-X-150-HR-LS 16: VSM17-X-200-HR-LS 17: VSM17-X-050-EA 18: VSM17-X-100-EA 19: VSM17-X-150-EA 20: VSM17-X-200-EA 21: VSM17-X-050-HR-EA 22: VSM17-X-100-HR-EA 23: VSM17-X-150-HR-EA 24: VSM17-X-200-HR-EA 25: VSM17-X-050-ER 26: VSM17-X-100-ER 27: VSM17-X-150-ER 28: VSM17-X-200-ER 29: VSM17-X-050-HR-ER 30: VSM17-X-100-HR-ER 31: VSM17-X-150-HR-ER 32: VSM17-X-200-HR-ER 33: VSM23-X-100 34: VSM23-X-150 35: VSM23-X-200 36: VSM23-X-250 37: VSM23-X-300 38: VSM23-X-350 39: VSM23-X-400 40: VSM23-X-450 41: VSM23-X-100-HR 42: VSM23-X-150-HR 43: VSM23-X-200-HR 44: VSM23-X-250-HR 45: VSM23-X-300-HR 46: VSM23-X-350-HR 47: VSM23-X-400-HR 48: VSM23-X-450-HR 49: VSM23-X-100-LS 50: VSM23-X-150-LS 51: VSM23-X-200-LS 52: VSM23-X-250-LS 53: VSM23-X-300-LS 54: VSM23-X-350-LS 55: VSM23-X-400-LS 56: VSM23-X-450-LS 57: VSM23-X-100-HR-LS 58: VSM23-X-150-HR-LS 59: VSM23-X-200-HR-LS 60: VSM23-X-250-HR-LS 61: VSM23-X-300-HR-LS 62: VSM23-X-350-HR-LS 63: VSM23-X-400-HR-LS 64: VSM23-X-450-HR-LS 65: VSM23-X-100-EA 66: VSM23-X-150-EA 67: VSM23-X-200-EA 68: VSM23-X-250-EA 69: VSM23-X-300-EA70: VSM23-X-350-EA 71: VSM23-X-400-EA 72: VSM23-X-450-EA 73: VSM23-X-100-HR-EA 74: VSM23-X-150-HR-EA 75: VSM23-X-200-HR-EA 76: VSM23-X-250-HR-EA 77: VSM23-X-300-HR-EA 78: VSM23-X-350-HR-EA 79: VSM23-X-400-HR-EA 80: VSM23-X-450-HR-EA 81: VSM23-X-100-ER 82: VSM23-X-150-ER 83: VSM23-X-200-ER 84: VSM23-X-250-ER 85: VSM23-X-300-ER 86: VSM23-X-350-ER 87: VSM23-X-400-ER 88: VSM23-X-450-ER 89: VSM23-X-100-HR-ER 90: VSM23-X-150-HR-ER 91: VSM23-X-200-HR-ER 92: VSM23-X-250-HR-ER 93: VSM23-X-300-HR-ER 94: VSM23-X-350-HR-ER 95: VSM23-X-400-HR-ER 96: VSM23-X-450-HR-ER 97: VSM30-X-500 98: VSM30-X-600 99: VSM30-X-700 100: VSM30-X-800 101: VSM30-X-900 102: VSM30-X-1000 103: VSM30-X-500-HR 104: VSM30-X-600-HR 105: VSM30-X-700-HR 106: VSM30-X-800-HR 107: VSM30-X-900-HR 108: VSM30-X-1000-HR 109: VSM30-X-500-EA 110: VSM30-X-600-EA 111: VSM30-X-700-EA 112: VSM30-X-800-EA 113: VSM30-X-900-EA 114: VSM30-X-1000-EA 115: VSM30-X-500-HR-EA 116: VSM30-X-600-HR-EA 117: VSM30-X-700-HR-EA 118: VSM30-X-800-HR-EA 119: VSM30-X-900-HR-EA 120: VSM30-X-1000-HR-EA 121: VSM30-X-500-ER 122: VSM30-X-600-ER 123: VSM30-X-700-ER 124: VSM30-X-800-ER 125: VSM30-X-900-ER 126: VSM30-X-1000-ER 127: VSM30-X-500-HR-ER 128: VSM30-X-600-HR-ER 129: VSM30-X-700-HR-ER 130: VSM30-X-800-HR-ER 131: VSM30-X-900-HR-ER 132: VSM30-X-1000-HR-ER 133: VSM17-Z-050 134: VSM17-Z-070 135: VSM17-Z-050-LS 136: VSM17-Z-070-LS 137: VSM17-Z-050-EA 138: VSM17-Z-070-EA 139: VSM17-Z-050-ER140: VSM17-Z-070-ER 141: VSM17-R-72K 142: VSM17-R-72K-LS 143: VSM17-R-72K-EA 144: VSM17-R-72K-ER 145: VSM17-R-3K6 146: VSM17-R-3K6-LS 147: VSM17-R-3K6-EA 148: VSM17-R-3K6-ER 149: VSM24-R 150: VSM24-R-LS 151: VSM24-R-EA 152: VSM24-R-ER 153: VSM17-G-070 154: VSM17-G-070-LS 155: VSM17-G-114 156: VSM17-G-114-LS 157: VSM17-G-114-EA 158: VSM17-G-114-ER
**Examples**
MCON:MPRESET,3<CR><LF> 0x0000,0x0000,0<CR><LF> // Set preset for "VSM17-X-150" // Note response is 0, not 3
##### MCON:NUDGE:RUN:NEG – Nudge negative Trigger a relative move of a distance specified by <MCON:NUDGE:VALUE> in the negative direction. A nudge is a preset relative move, and is the same as using the move relative command, except that in this case the distance is preset beforehand.
Command:**MCON:NUDGE:RUN:NEG**<CR><LF>
##### MCON:NUDGE:RUN:POS – Nudge positive Trigger a relative move of a distance specified by <MCON:NUDGE:VALUE> in the positive direction. A nudge is a preset relative move, and is the same as using the move relative command, except that in this case the distance is preset beforehand.
Command:**MCON:NUDGE:RUN:NEG**<CR><LF>
##### MCON:NUDGE:VALUE - Nudge distance A nudge is a preset relative move, and is the same as using the move relative command, except that in this case the distance is preset beforehand. Use this command to specify the preset distance to move, then MCON:NUDGE:RUN:NEG or MCON:NUDGE:RUN:POS to trigger the move.
Command:**MCON:NUDGE:VALUE,**<displacement><CR><LF>
Query:**LIMIT:STOPMODE**<CR><LF>
Response:<displacement>
**Data****Type****Description**
displacementFLOATDistance to move when nudge is triggered. The value is signed, and the actual relative move executed is displacement \* 1 for positive nudge and displacement \* -1 for negative nudge.
##### MCON:RUNA – Run, absolute position Move the motor to a specified absolute position.
Command:**MCON:RUNA,**<position><CR><LF>
Response:<position>
**Data****Type****Description**
positionFLOATAbsolute position to move to. See <section> for notes on limiting values.
**Examples**
SYS:UNIT,0 0x0000,0x0000,0<CR><LF> MCON:RUNA,10<CR><LF> 0x0000,0x0000,1.00000E+1<CR><LF> SYS:UNIT,102 0x0000,0x0000,102<CR><LF> MCON:RUNA,23.5<CR><LF> 0x0000,0x0000<CR><LF> // Set units to steps // Move to position 10 steps // Set units to mm // Move to position 23.5 mm (assumes that we've set // displacement per step appropriately first)
##### MCON:RUNH - Run, home Initiate a homing sequence to the specified limit.
Command:**MCON:RUNH,**<direction><CR><LF>
Response:
**Data****Type****Description**
directionSTRING'+' : Home towards positive limit, step count increases '-': Home towards negative, step count decreases
**Examples**
MCON:RUNH,+<CR><LF> 0x0000,0x0000<CR><LF> MCON:RUNH,-<CR><LF> 0x0000,0x0000<CR><LF> // Home motor in positive direction // Home motor in negative dire
##### MCON:RUNR - Run, relative position Move the motor a specified number of steps, relative to the current position.
Command:**MCON:RUNR,**<displacement><CR><LF>
Response:<displacement>
**Data****Type****Description**
displacementFLOATRelative distance to move by. See <section> for notes on limiting values.
**Examples**
MCON:RUNR,2000<CR><LF> 0x0000,0x0000,1<CR><LF> MCON:RUNR,-2000<CR><LF> 0x0000,0x0000,1<CR><LF> // Move motor in positive direction by 2000 steps // Move motor in negative direction by 2000 steps
##### MOTOR:RUNV – Run, velocity Start continuous rotation in specified direction.
Command:**MCON:RUNV,**<direction><CR><LF>
Response:
**Data****Type****Description**
directionSTRING'+' : Spin in positive direction, step count increases '-': Spin in negative direction, step count decreases
**Examples**
MCON:RUNV,+<CR><LF> 0x0000,0x0000<CR><LF> MCON:RUNV,-<CR><LF> 0x0000,0x0000<CR><LF> // Spin motor in positive direction // Spin motor in negative direction
##### MCON:SF:EPC - Closed loop (EPC) behaviour Get or set the EPC behaviour.
Command:**MCON:SF:EPC,**<behaviour><CR><LF>
Query:**MCON:SF:EPC**<CR><LF>
Response:<behaviour>
**Data****Type****Description**
behaviourUINT\[0: None\] 1: Warn 2: Error
##### MCON:SF:EPC:EG - Closed loop (EPC) error guard Get or set the error guard feature. When enabled, if EPC detects that corrections appear to be resulting in positive feedback (i.e. the error is growing with each successive correction rather than reducing) then the current round of EPC is stopped.
Command:**MCON:SF:EPC:EG,**<state><CR><LF>
Query:**MCON:SF:EPC:EG**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disabled \[1: Enabled\]
##### MCON:SF:EPC:N - Closed loop (EPC) number of iterations Get or set the EPC number of iterations. Zero has the special meaning of infinity.
Command:**MCON:SF:EPC:N,**<iterations><CR><LF>
Query:**MCON:SF:EPC:N**<CR><LF>
Response:<iterations>
**Data****Type****Description**
iterationsUINT0: Infinite/unlimited Maximum: 2^32
##### MCON:SF:EPC:T - Closed loop (EPC) tolerance Get or set the EPC tolerance.
Command:**MCON:SF:EPC:T,**<tolerance><CR><LF>
Query:**MCON:SF:EPC:T**<CR><LF>
Response:<tolerance>
**Data****Type****Description**
toleranceFLOATPosition tolerance
**Examples**
SYS:UNIT,100 0x0000,0x0000,102<CR><LF> MCON:SF:EPC:T,0.5e-6<CR><LF> 0x0000,0x0000<CR><LF> // Set units to meter // Set tolerance to 0.5 um
##### MCON:SF:GUARD - Guard behaviour Get or set the guard behaviour.
Command:**MCON:SF:GUARD,**<behaviour><CR><LF>
Query:**MCON:SF:GUARD**<CR><LF>
Response:<behaviour>
**Data****Type****Description**
behaviourUINT\[0: None\] 1: Warn 2: Error
##### MCON:SF:GUARD:n - Guard value n Get or set the guard value, where n is 1 or 2.
Command:**MCON:SF:GUARD:n,**<position><CR><LF>
Query:**MCON:SF:GUARD:n**<CR><LF>
Response:<position>
**Data****Type****Description**
positionFLOATSee <section> for notes on limiting values.
##### MCON:SF:ROML- Range of motion limiter behaviour Get or set the range of motion limiter behaviour.
Command:**MCON:SF:ROML,**<behaviour><CR><LF>
Query:**MCON:SF:ROML**<CR><LF>
Response:<behaviour>
**Data****Type****Description**
behaviourUINT\[0: None\] 1: Warn 2: Error
##### MCON:SF:ROML:n - Range of motion limiter value n Get or set the range of motion limiter value, where n is 1 or 2.
Command:**MCON:SF:ROML:n,**<position><CR><LF>
Query:**MCON:SF:ROML:n**<CR><LF>
Response:<position>
**Data****Type****Description**
positionFLOATSee <section> for notes on limiting values.
##### MCON:SF:ROML:J - Range of motion limiter enable for joystick and step/direction Get or set a value indicating whether the function should be applied when using the joystick or step direction mode.
Command:**MCON:SF:ROML:J,**<state><CR><LF>
Query:**MCON:SF:ROML:J**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disabled \[1: Enabled\]
##### MCON:SSTOP – Stop motor in <=1 s Decelerates the motor to a stop within 1 second, disregarding the current profile to do so.
Command:**MOTOR:SSTOP**<CR><LF>
**Remarks** This command does not consider the deceleration set in the profile. Instead, it calculates the deceleration required to stop in 1 second, according to the actual velocity. The motor will stop in a full step position. Steps may be lost if the load requires greater than this duration to stop. **Examples**
MCON:SSTOP<CR><LF> 0x0000,0x0000<CR><LF> // Stop the motor in 1 seconds
##### MCON:STOP – Stop motor Stop the motor, decelerating according to the current profile
Command:**MCON:SF:STOP**<CR><LF>
**Remarks** During the deceleration phase that stops the motor, any modifications to the acceleration or deceleration interrupt the stopping phase. Re-send the command to restart the motor stopping phase. **Examples**
MCON:STOP<CR><LF> 0x0000,0x0000<CR><LF> // Stop the motor
##### MCON:U - Displacement per step Get or set a value representing the displacement per step of the mechanism. That is, the distance the mechanism moves per step. This property must be configured correctly to use units other than steps.
Command:**MCON:U,**<displacement><CR><LF>
Query:**MCON:U**<CR><LF>
Response:<displacement>
**Data****Type****Description**
displacementFLOATDisplacement per step.
##### MCON:ZEROA – Zero absolute position counter Zero the absolute position counter.
Command:**MCON:ZEROA**<CR><LF>
##### MCON:ZEROAR – Zero absolute and relative position counters Zero the absolute and relative position counters.
Command:**MCON:ZEROAR**<CR><LF>
##### MCON:ZEROR – Zero relative position counter Zero the relative position counter.
Command:**MCON:ZEROR**<CR><LF>
#### Motor ##### MOTOR:xMAX - Acceleration and deceleration Gets or sets acceleration or deceleration.
Command:**MOTOR:xMAX,**<user value><CR><LF>
Query:**MOTOR:xMAX**<CR><LF>
Response:<user value>,<real value>
Where 'x' is 'A' for acceleration and 'D' for deceleration.
**Data****Type****Description**
user valueFLOATSee <section> for notes on limiting values. For the response, this is the value as entered.
real valueFLOATThe value, rounded to the closest real value the SMD4 can achieve.
**Examples**
MOTOR:AMAX,150<CR><LF> 0x0000,0x0000,1.5000E+02,1.4988E+02<CR><LF> MOTOR:AMAX<CR><LF> 0x0000,0x0000,1.5000E+02,1.4988E+02<CR><LF> // Assuming unit is steps, set acceleration to 150Hz/s // Note that the target value of 150 has been adjusted to the // closest real value, which deviates from the requested value // by 0.12 Hz/s
##### MOTOR:EDGE – Edge to step on Gets or sets which edge(s) a step occurs on when in step direction mode.
Command:**MOTOR:EDGE,**<edge><CR><LF>
Query:**MOTOR:EDGE** <CR><LF>
Response:<edge>
**Data****Type****Description**
edgeUINT\[0: Rising edge only\] 1: Both rising and falling edges
**Remarks** Use option for both edges to halve the frequency on the step input required to obtain a given step rate. **Examples**
MOTOR:EDGE,1<CR><LF> 0x0000,0x0000,1<CR><LF> MOTOR:EDGE<CR><LF> 0x0000,0x0000,1<CR><LF> // Set step on both edges // Query
##### MOTOR:F – Freewheel mode Gets or sets the freewheel mode. For maximum passive braking use phases shorted. Use freewheel to electrically disconnect the motor and allow it to freewheel. Hold current must be set to zero for this option to work. The chosen mode becomes active after a time period specified by ‘<MOTOR:PDDEL>’ and ‘<MOTOR:IHD>
Command:**MOTOR:F,**<mode><CR><LF>
Query:**MOTOR:F** <CR><LF>
Response:<mode>
**Data****Type****Description**
modeUINT0: Normal 1: Freewheel \[2: Phases shorted to GND\]
**Remarks** Use the freewheel mode to allow the motor shaft to spin freely when the motor current is zero. The phases shorted to GND option supplies no power to the motor, but by shorting the phases together a holding torque is produced, and the motor shaft offers considerable resistance to movement. This is enough in many applications to remove the need for any holding current, with the benefit that no heat is generated because the motor phases are not energised. **Examples**
MOTOR:F,1<CR><LF> 0x0000,0x0000,1<CR><LF> MOTOR:F<CR><LF> 0x0000,0x0000,1<CR><LF> // Set to freewheel mode // motor shaft can be turned easily // Query
##### MOTOR:Ix – Acceleration, run and hold currents Gets or sets the motor current in amps RMS applied during acceleration, run and hold phases of operation.
Command:**MOTOR:Ix,**<current><CR><LF>
Query:**MOTOR:Ix** <CR><LF>
Response:<current>
Where 'x' is 'A' for acceleration, 'R' for run and 'H' for hold current.
**Data****Type****Description**
currentFLOAT\[Default: 1.044\] Minimum: 0 Maximum: 1.044
**Remarks** Motor current is rounded to the closest multiple of 1.044 A / 31 (approx. 33 mA), so the queried value may differ slightly from that set for this reason. Acceleration current must be set equal to or greater than run current. Acceleration current is not adjusted to match run current if acceleration current is smaller than run current. Run current must be set equal to or smaller than acceleration current. Acceleration current is automatically adjusted to be equal to run current, if a change to run current makes it greater than acceleration current. If your application allows it, set [MOTOR:PDDEL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%E2%80%93-power-down-d), [MOTOR:IHD ](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%E2%80%93-current-reduct)and [MOTOR:IH ](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%E2%80%93-hold-current)to zero in order to reduce run current to zero as quickly as possible after stopping which minimises motor temperature rise. **Examples**
MOTOR:IA,1.044<CR><LF> 0x0000,0x0000,1.0440E+00<CR><LF> MOTOR:IA<CR><LF> 0x0000,0x0000,1.0440E+00<CR><LF> // Set acceleration current to 1.044 A // Query acceleration current
##### MOTOR:IHD – Delay per current reduction step Gets or sets the delay in seconds per current reduction step that occurs when run current is reduced to hold current. Non-zero values result in a smooth reduction in current which reduces the chance of a jerk upon power down. The range is 0 to 328 ms, with a resolution of 4 bits or approx. 20 ms. Current setting has a resolution of 5 bits, or 32 steps, and consequently the current reduction process will only have as many steps as exist between the configured run and hold current. See also [MOTOR:PDDEL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%E2%80%93-power-down-d). If your application allows it, set [MOTOR:PDDEL,](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pddel-%E2%80%93-power-down-d) [MOTOR:IHD ](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%E2%80%93-current-reduct)and [MOTOR:IH](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%E2%80%93-hold-current) to zero in order to reduce run current to zero as quickly as possible after stopping which minimises motor temperature rise.
Command:**MOTOR:IHD,**<seconds><CR><LF>
Query:**MOTOR:IHD** <CR><LF>
Response:<seconds>
**Data****Type****Description**
secondsFLOAT\[Default: 0\] Minimum: 0 Maximum: 328 ms Notice that the duration is in seconds, so to set the value to 100 ms for example, you'd enter '100e-3' or '0.1'
**Remarks** See also section [Going to standby](https://bookstack.vps-da8d40f3.arunmicro.com/link/10#bkmrk-going-to-standbyperi) **Examples**
MOTOR:IHD,328E-3<CR><LF> 0x0000,0x0000,3.2800E-01<CR><LF> MOTOR:IHD<CR><LF> 0x0000,0x0000,3.2800E-01<CR><LF> // Set to 328 ms // Query
##### MOTOR:INTERP – Step interpolation Gets or sets a value indicating whether the step input should be interpolated to 256 microsteps. Applicable in step direction mode only.
Command:**MOTOR:INTERP,**<mode><CR><LF>
Query:**MOTOR:INTERP** <CR><LF>
Response:<mode>
**Data****Type****Description**
modeUINT\[0: Normal; each step input will cause one step at the current resolution\] 1: Interpolate; each step input will be interpolated to 256 microsteps.
**Remarks** Enabling this feature affords the benefits of high-resolution microstepping, without the drawback of very high step clock rates. Internal logic tracks the rate at which steps are supplied and smooths them out into 256 microsteps; e.g. if resolution is set to full-step and see [edge to step on](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-edge-%E2%80%93-edge-to-step-) is set to rising, then each rising edge on the step input generates a series of 256 microsteps at the motor. **Examples**
MOTOR:INTERP,1<CR><LF> 0x0000,0x0000,1<CR><LF> MOTOR:INTERP<CR><LF> 0x0000,0x0000,1<CR><LF> // Enable interpolation // Query
##### MOTOR:PACT – Actual position Gets or sets the actual position. The usual way to position the motor is to initialise the actual position to some reference value, usually 0, then adjust the target position to move the motor. In this way, by setting [MOTOR:RUNA](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runa-%E2%80%93-run%2C-absolute) to 0 the motor can be homed to the initial 0 position. If you wish to perform relative movements, while still retaining an absolute reference, see [MOTOR:PREL](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-prel-%E2%80%93-relative-posi) command. It is best to use the <MCON:ZERO> commands to zero the absolute or relative positions, then use this command to read the position.
Command:**MOTOR:PACT,**<position><CR><LF>
Query:**MOTOR:PACT**<CR><LF>
Response:<position>
**Data****Type****Description**
positionFLOATSee <section> for notes on limiting values.
**Remarks** Query is applicable any time, Set requires the motor in standby condition. **Examples**
MOTOR:PACT<CR><LF> Rx: 0x0000,0x0000,1000.00<CR><LF> MOTOR:PACT,0<CR><LF> Rx: 0x0000,0x0000,0.00<CR><LF> // Query // Set actual position 0
##### MOTOR:PDDEL – Power down delay Gets or sets the delay time in seconds between stand still occurring and the motor current being reduced from the acceleration current to the hold current. The range is 0 to 5.5 seconds, with approximately 8 bit / 20 ms resolution. See also [DelayPerCurrentReductionStep](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%E2%80%93-current-reduct). If your application allows it, set MOTOR:PDDEL, [MOTOR:IHD](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%E2%80%93-current-reducthttps://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ihd-%E2%80%93-current-reduct) and [MOTOR:IH](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-ih-%E2%80%93-hold-current) to zero in order to reduce run current to zero as quickly as possible after stopping which minimises motor temperature rise.
Command:**MOTOR:PDDEL,**<delay><CR><LF>
Query:**MOTOR:PDDEL**<CR><LF>
Response:<delay>
**Data****Type****Description**
delayFLOATDelay in seconds. The response value is rounded to the closest value the SMD4 can set, so may not match the set value exactly. \[Default: 0\] Minimum: 0 Maximum: 5.5\]
**Examples**
MOTOR:PDDEL,100E-3<CR><LF> 0x0000,0x0000,1.0000E-01<CR><LF> MOTOR:PDDEL<CR><LF> 0x0000,0x0000,1.0000E-01<CR><LF> // Set to 100 ms // Query
##### MOTOR:PREL – Relative position Gets or sets the relative position counter in steps. Use this function to perform relative movement, while still retaining reference to absolute position via [MOTOR:PACT](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-pact-%E2%80%93-actual-positi). Set the desired value then use the [MOTOR:RUNR](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-runr---run%2C-relative) command to initiate movement.
Command:**MOTOR:PREL,**<displacement><CR><LF>
Query:**MOTOR:PREL**<CR><LF>
Response:<displacement>
**Data****Type****Description**
displacementFLOATSee <section> for notes on limiting values.
**Remarks** Set requires the motor be in standby condition. **Examples**
MOTOR:PREL<CR><LF> 0x0000,0x0000,1000.00<CR><LF> MOTOR:PREL,0<CR><LF> 0x0000,0x0000,0.00<CR><LF> // Query // Set relative position 0
##### MOTOR:RES - Resolution Gets or sets the microstep resolution.
Command:**MOTOR:RES,**<res><CR><LF>
Query:**MOTOR:RES**<CR><LF>
Response:<res>
**Data****Type****Description**
resUINTMicrostep resolution as an integer. \[Default: 256\] Possible values: 8, 16, 32, 64, 128, 256\]
**Remarks** Motor must be in standby to set the resolution. The resolution applies globally, including for the step/direction interface. Each step on the step/direction interface generates a 1/8, 1/16, 1/32 etc. step according to the resolution set here. Above a configurable step frequency, the drive switches from the microstepping resolution specified here to full step mode in any case. See section <MOTOR:[THIGH>](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-thigh-%E2%80%93-microstep-tr) **Examples**
MOTOR:RES,256<CR><LF> 0x0000,0x0000,256<CR><LF> MOTOR:RES<CR><LF> 0x0000,0x0000,256<CR><LF> // Set resolution to 256 // Query
##### MOTOR:SDMODE - Step/direction mode Gets of sets the step/direction mode. In normal mode, edges on the step input generate steps according to the edge setting, see [edge](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-edge-%E2%80%93-edge-to-step-). In triggered mode, continuous motion is triggered by an edge on the step input; this is akin to how continuous mode works for the joystick, see [joystick continuous mode](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-jsmode-%E2%80%93-joystick-mo).
Command:**MOTOR:SDMODE,**<mode><CR><LF>
Query:**MOTOR:SDMODE**<CR><LF>
Response:<mode>
**Data****Type****Description**
modeUINT\[0: Normal\] 1: Triggered\]
**Examples**
MOTOR:SDMODE,0<CR><LF> 0x0000,0x0000,0<CR><LF> // Set mode 0, normal
##### MOTOR:T – Motor temperature Get the motor temperature in °C.
Query:**MOTOR:T**<CR><LF>
Response:<temperature>
**Data****Type****Description**
temperatureINTMotor temperature in degrees centigrade.
**Remarks** The reported temperature is intended for monitoring motor temperature only and should not be used for or relied upon for any other purpose. **Examples**
MOTOR:T<CR><LF> 0x0000,0x0000,25<CR><LF> // Get motor temperature // Response is 25 degrees Celsius
##### MOTOR:THIGH – Microstep transition Gets or sets the full step / microstepping transition. When frequency falls below this threshold (approximately), the motor switches from full step to the selected microstep resolution. The product determines the upper threshold automatically and applies hysteresis to avoid possible jitter between the two stepping modes. The upper threshold cannot be adjusted.
Command:**MOTOR:THIGH,**<user value><CR><LF>
Query:**MOTOR:THIGH**<CR><LF>
Response:<user value>,<real value>
**Data****Type****Description**
user valueFLOATSee <section> for notes on limiting values. For the response, this is the value as entered.
real valueFLOATThe value, rounded to the closest real value the SMD4 can achieve.
**Remarks** AML Device control software calculates and displays the upper threshold value for reference, although as noted above it cannot be adjusted. **Examples**
MOTOR:THIGH,500<CR><LF> 0x0000,0x0000,5.0000E+02,5.0400E+02<CR><LF> MOTOR:THIGH<CR><LF> 0x0000,0x0000,5.0000E+02,5.0400E+02<CR><LF> // Set threshold to 500 Hz (assuming units are steps) // Query
##### MOTOR:TSEL – Temperature sensor selection Gets or sets the motor temperature sensor type.
Command:**MOTOR:TSEL,**<selection><CR><LF>
Query:**MOTOR:TSEL**<CR><LF>
Response:<selection>
**Data****Type****Description**
selectionUINT\[0: Thermocouple\] 1: RTD
**Remarks** To protect the motor from possible damage, the motor is disabled if the temperature sensor is faulty or missing. The response is not immediate, and several seconds may elapse between emergence of a fault and the motor being disabled. **Examples**
MOTOR:TSEL,0<CR><LF> 0x0000,0x0000,0<CR><LF> MOTOR:TSEL<CR><LF> 0x0000,0x0000,0<CR><LF> // Select thermocouple sensor // Get selected sensor, returning 0 for thermocouple
##### MOTOR:TZW – Zero wait time Gets or sets the waiting time after ramping down to a stop before the next movement or direction inversion can start. Can be used to avoid excess acceleration, e.g. from [MOTOR:VSTOP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstop-%E2%80%93-stop-frequen) to [MOTOR:VSTART](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstart-%E2%80%93-start-frequ). When using higher values for the start and stop frequency, a subsequent move in the opposite direction would result in a jerk equal to start frequency + stop frequency. The motor may not be able to follow this. Zero wait time can be used to introduce a short delay between the two and eliminate the jerk.
Command:**MOTOR:TZW,**<duration><CR><LF>
Query:**MOTOR:THIGH**<CR><LF>
Response:<duration>
**Data****Type****Description**
durationFLOATWaiting time in seconds: \[Default: 0\] Minimum: 0 Maximum: 2.7 s
**Examples**
MOTOR:TZW,0.1<CR><LF> 0x0000,0x0000,1.0000E+02<CR><LF> MOTOR:TZW<CR><LF> 0x0000,0x0000,1.0000E+02<CR><LF> // Set TZW to 100 ms // Query
##### MOTOR:VACT – Actual velocity Gets the actual velocity of the motor from the step counters. This value is derived from the stepper motor control logic; there is no feedback from the motor itself. Hence, the motor could be stalled while which continues to indicate the expected.
Query:**MOTOR:VACT**<CR><LF>
Response:<velocity>
**Data****Type****Description**
velocityFLOATMotor velocity.
**Examples**
Tx: MOTOR:VACT<CR><LF> Rx: 0x0000,0x0000,1.50E+01<CR><LF> // Motor velocity is 15 (assuming units are steps, 15 steps per // second)
##### MOTOR:VMAX – Target motor speed Gets or sets the target motor speed to use when positioning. This is the maximum speed the motor will be run at. This will only be reached if there is enough time or distance to do so; if moving for a short time, for example, the motor may only accelerate to some fraction of the target speed before it is time to decelerate to a stop.
Command:**MOTOR:VMAX,**<user value><CR><LF>
Query:**MOTOR:VMAX**<CR><LF>
Response:<user value>,<real value>
**Data****Type****Description**
user valueFLOATSee <section> for notes on limiting values. For the response, this is the value as entered.
real valueFLOATThe value, rounded to the closest real value the SMD4 can achieve.
**Remarks** Motor torque decreases with speed, and each motor will have a different maximum speed that it can achieve while reliably maintaining synchronicity (when synchronicity is lost, the motor fails to complete the steps that it is commanded to, leading to a difference between the true and actual positions), depending on the load it is driving. Target motor speed must be set equal to or greater than start speed and stop speed. Target motor speed is not adjusted to match start speed and stop speed if target speed is smaller than start speed and stop speed. **Examples**
MOTOR:VMAX,12.3<CR><LF> 0x0000,0x0000,1.0000E+03,1.0000E+03<CR><LF> MOTOR:VMAX<CR><LF> 0x0000,0x0000,1.0000E+03,1.0000E+03<CR><LF> // Set speed to 12.3 (assuming units are degrees, this means // 12.3°/second
##### MOTOR:VSTART – Start speed Get or set the start speed. Must be set less than or equal to [MOTOR:VSTOP](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstop-%E2%80%93-stop-frequen). The acceleration ramp starts from this speed. The start speed is the initial step rate, and helps to allow the motor to overcome inertia and start moving smoothly; if start speed were zero, the duration of the initial few steps might be long enough that the motor would overcome inertia on the first step, then effectively stop for a time, then have to overcome inertia once more for the second step, and so on, until the steps were frequent enough that the motor remains moving.
Command:**MOTOR:VSTART,**<user value><CR><LF>
Query:**MOTOR:VSTART**<CR><LF>
Response:<user value>,<real value>
**Data****Type****Description**
user valueFLOATValid range in steps per second (if using other units, convert these values to your unit using the displacement per count value to determine the limits in your unit): \[Default: 100\] Minimum: 1 Maximum: 700 For the response, this is the value as entered.
real valueFLOATThe value, rounded to the closest real value the SMD4 can achieve.
**Remarks** Start speed must be set equal to or less than stop speed. If a change to start speed makes it bigger than stop speed, stop speed is automatically adjusted to be equal to start speed. Start speed must be set equal to or less than target speed. Start speed is not adjusted to match target speed if start speed is greater than target speed. **Examples**
MOTOR:VSTART,0<CR><LF> 0x0000,0x0000,0.0000+00,0.0000+00<CR><LF> MOTOR:VSTART<CR><LF> 0x0000,0x0000,0.0000+00,0.0000+00<CR><LF> // Assuming units are steps... // Set start frequency to 0 Hz // Query
##### MOTOR:VSTOP – Stop speed Get or set the stop speed. Must be greater than or equal to [MOTOR:VSTART](https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-vstart-%E2%80%93-start-frequ). The deceleration ramp ends at this speed. The final step before stop will occur at this speed. The stop speed is the speed at which the deceleration ramp ends; i.e. the deceleration ramp does not go from the target speed linearly down to 0, but from the target speed linearly down to the stop speed.
Command:**MOTOR:VSTOP,**<user value><CR><LF>
Query:**MOTOR:VSTOP**<CR><LF>
Response:<user value>,<real value>
**Data****Type****Description**
user valueFLOATValid range in steps per second (if using other units, convert these values to your unit using the displacement per count value to determine the limits in your unit): \[Default: 100\] Minimum: 1 Maximum: 700 For the response, this is the value as entered.
real valueFLOATThe value, rounded to the closest real value the SMD4 can achieve.
**Remarks** Start speed must be set equal to or less than stop speed. If a change to start speed makes it bigger than stop speed, stop speed is automatically adjusted to be equal to start speed. Start speed must be set equal to or less than target speed. Start speed is not adjusted to match target speed if start speed is greater than target speed **Examples**
MOTOR:VSTOP,10<CR><LF> 0x0000,0x0000,1.0000+01,9.9996+00<CR><LF> MOTOR:VSTOP<CR><LF> 0x0000,0x0000,1.0000+01,9.9996+00<CR><LF> // Assuming units are steps... // Set stop frequency to 10 Hz // Notice the closest real value of 9.9996 Hz set // Query
#### System ##### SYS:BSN – Get motherboard serial number Gets the serial number of the motherboard.
Query:**SYS:BSN**<CR><LF>
Response:<serial>
**Data****Type****Description**
serialSTRINGBoard serial number
**Examples**
SYS:BSN<CR><LF> 0x088e,0x0000,1234ABCD<CR><LF> // Query
##### SYS:CLR – Clear faults Clear all error flags.
Command:**SYS:CLR**<CR><LF>
##### SYS:EXTEN – External enable used Gets or sets a value indicating whether the external enable signal should be respected. If not using the external enable and it remains disconnected, set to false.
Command:**SYS:EXTEN,**<state><CR><LF>
Query:**SYS:EXTEN**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disabled \[1: Enabled\]
**Remarks** The external enable input requires a voltage to be applied between SDE COM and EN on the I/O connector which may be inconvenient if you do not wish to use the enable input. In that case, disable the enable input by sending this command with the argument set to false. ##### SYS:FLAGS – Get status and error flags Gets status and error flags, per <section>. ##### SYS:FLAGSV – Get status and error flags summary Gets a human readable summary of status and error flags. Set flags are marked by an 'x'.
Query:**SYS:FLAGSV**<CR><LF>
Response:<verbose flags>
**Data****Type****Description**
verbose flagsBOOL0: Disabled \[1: Enabled\]
SYS:FLAGSV<CR><LF> 0x0886,0x0000, -------Status flags------ \[ \]JsCon \[X\]LimitNeg \[X\]LimitPos \[ \]Exten \[ \]Ident \[ \]EpcActive \[ \]RomlActive \[X\]Standby \[ \]Baking \[ \]TargetVelocityReached \[ \]GuardActive \[X\]BoostOperational \[ \]BoostDisableJumper \[ \]BoostUVLO \[ \]OmWaiting \[ \]MconsfWarning -------Error flags------- \[ \]TempShort \[ \]TempOpen \[ \]TempOver \[ \]MotorShort \[ \]ExternalInhibit \[ \]EmergencyStop \[ \]ConfigError \[ \]\_reserved7 \[ \]\_reserved8 \[ \]SDRAM \[ \]\_reserved10 \[ \]\_reserved11 \[ \]\_reserved12 \[ \]\_reserved13 \[ \]\_reserved14 \[ \]MconsfFault
##### SYS:FW – Get firmware version Gets firmware version string.
Query:**SYS:FW**<CR><LF>
Response:<version>
**Data****Type****Description**
versionSTRINGFirmware version.
**Examples**
Tx: SYS:FW<CR><LF> Rx: 0x088e,0x0000,24044.12<CR><LF> // Query
##### SYS:IDENT - Blink the status indicator to help identify the unit Gets or sets a value indicating whether the identify function is enabled. When set to true, the green status light on the front of the product flashes. This can be used to help identify one device amongst several.
Command:**SYS:IDENT,**<state><CR><LF>
Query:**SYS:IDENT**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL\[0: Disabled\] 1: Enabled
**Examples**
Tx: SYS:IDENT,1<CR><LF> Rx: 0x0000,0x0000,1<CR><LF> Tx: SYS:IDENT<CR><LF> Rx: 0x0000,0x0000,1<CR><LF> // Set ident function on // Query state of ident function
##### SYS:JS:EN – Enable joystick input Gets or sets a value indicating whether the joystick input should be enabled.
Command:**SYS:JS:EN,**<state><CR><LF>
Query:**SYS:JS:EN**<CR><LF>
Response:<state>
**Data****Type****Description**
stateBOOL0: Disabled \[1: Enabled\]
##### SYS:JS:MODE – Joystick mode Gets or sets the joystick mode. See <section>.
Command:**SYS:JS:MODE,**<mode><CR><LF>
Query:**SYS:JS:MODE**<CR><LF>
Response:<mode>
**Data****Type****Description**
stateUINT\[0: Single step\] 1: Continuous 2: Nudge
##### SYS:LOAD – Load last stored settings Load the last saves configuration.
Command:**SYS:LOAD**<CR><LF>
##### SYS:LOADFD – Load factory default settings Load the factory default configuration. Use the store command if you want to persist the changes.
Command:**SYS:LOADFD,**<mode><CR><LF>
##### SYS:MODE - Choose mode of operation Gets or sets the operating mode. See section [Operating Modes](https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-operating-modes) for an explanation of each mode. The motor must be stopped before changing mode.
Command:**SYS:MODE,**<mode><CR><LF>
Query:**SYS:MODE**<CR><LF>
Response:<mode> (name)
**Data****Type****Description**
modeUINTMode number: 0: Step/direction 1: Normal 3: Bake
nameSTRINGA space follows the mode number, then the mode name in round brackets.
SYS:MODE,1<CR><LF> 0x0000,0x0000,1 (Remote)<CR><LF> SYS:MODE<CR><LF> 0x0000,0x0000,1 (Remote)<CR><LF> // Set mode to remote // Query state of mode
##### SYS:NAME – Device name tag Gets or sets a name tag for the SMD4.
Query:**SYS:NAME**<CR><LF>
Response:<name>
**Data****Type****Description**
nameSTRINGName for this SMD4.
**Examples**
Tx: SYS:NAME<CR><LF> Rx: 0x088e,0x0000,MyDevice<CR><LF> // Query
##### SYS:PROG – Enter programming mode Reboot the SMD4 into programming mode. Used by AML device control software to initiate a firmware update. Power cycle to cancel this mode. There is no response to this command.
Command:**SYS:PROG**<CR><LF>
**Examples**
SYS:PROG<CR><LF>
##### SYS:RESET– Restart the SMD4 Reboot the SMD4. There is no response to this command.
Command:**SYS:RESET**<CR><LF>
##### SYS:SER – Get product serial number Gets the serial number of the product. This matches the serial number label installed on the product.
Query:**SYS:SER**<CR><LF>
Response:<serial>
**Data****Type****Description**
serialSTRINGSerial number of the SMD4.
**Examples**
Tx: SYS:SER<CR><LF> Rx: 0x088e,0x0000,00000-000<CR><LF> // Query
##### SYS:STORE Save the current settings. These settings will be loaded on restart.
Command:**SYS:STORE**<CR><LF>
##### SYS:UNITS Get or set the measurement units used.
Command:**SYS:UNITS,**<units><CR><LF>
Query:**SYS:UNITS**<CR><LF>
Response:<units>
**Data****Type****Description**
unitsUINT\[0: Step\] 100: Meter 101: Inch 102: Millimeter 103: Micron 200: Degree 201: Radian 202: Revolution
##### SYS:UPTIME – Get uptime Gets the elapsed time since start up in milliseconds.
Query:**SYS:UPTIME**<CR><LF>
Response:<uptime>
**Data****Type****Description**
uptimeUINTUptime in milliseconds.
SYS:UPTIME<CR><LF> 0x088e,0x0000,10000<CR><LF> // Query // Uptime is 10 seconds
##### SYS:UUID – Get UUID Gets a unique ID number which is included in the data reported when using SSDP. See SSDP. Not the same as the MAC address.
Query:**SYS:UUID**<CR><LF>
Response:<uuid>
**Data****Type****Description**
uuidSTRINGUUID string
**Examples**
Tx: SYS:UUID<CR><LF> Rx: 0x088e,0x0000,f4562fb1-d002-11ee-b3e5-44b7d0c71675<CR><LF> // Query