
Getting started

The quickest way to get started with the SMD4 and evaluate the features described in this section (having

completed wiring up according to the previous chapter) is to install the SMD4 software on your PC (see 

Software section), power on the SMD4 and connect it with the USB lead to the PC. 

AML Device Control software allows one or more SMD4 units to be combined into a system and controlled

individually or as a group. The software exposes all configuration items and makes it quick and easy to

change any setting. Movements can be planned and executed. Live readouts of position, speed and status

are presented.

Start the software, then click "Add device" in the top left corner. A list of available devices will appear. Click

your device to select it, then click the 'Add device' button.

Your new device appears in the tree on the left. It can be configured using the properties panel on the right

hand side, while the central window shows speed, position and temperature readouts from the device, and

provides controls for planning and making movements.

Operation

https://bookstack.vps-da8d40f3.arunmicro.com/link/29#bkmrk-page-title
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/add-device.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/add-device.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/7IDimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/7IDimage.png


See here for more detail on the software.

The remote interface uses a straightforward text based protocol, so it is easy to send commands to it using

for example:

Terminal applications

Embedded systems

Your own software

A C# API is available to speed up development of your own applications. Wrappers are available for other

languages, including Python. The API is extensively documented and very quick to get up and running

with. A quick start guide is available here.

The remote interface protocol is described in section remote interfaces.

The SMD4 has several operating modes:

Normal - The default and usual operating mode

Step and direction - Control the motor using an opto-isolated industry standard step direction

interface

Bake - Controlled heating of the motor to drive off adsorbed gasses

Advanced users, system integrators

• 

• 

• 

Operating modes

• 

• 

• 

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/8x4image.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/8x4image.png
https://bookstack.vps-da8d40f3.arunmicro.com/link/29#bkmrk-page-title
https://bookstack.vps-da8d40f3.arunmicro.com/link/93#bkmrk-page-title
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/remote-interfaces


Configuration can be performed at any time and in any mode using one of the remote interfaces (USB,

LAN or Serial). 

Mode can be changed only when the motor is stopped, which can be determined from the standby flag

returned in every communication, see here. Unless otherwise noted, activities described in this manual are

performed in normal mode.

All changes made to the configuration via the remote interface are volatile (i.e. not retained on power

cycling) unless the store command is executed before powering off. The AML Device Control software

warns you of this when closing the application, but if writing a custom application to control the SMD4, your

application must handle this if settings are to be persisted.

The SMD4 will always load the last stored settings on power on, or if the store command has not been

previously used, defaults are loaded as per section Command Reference. If settings become corrupted, for

example, the write endurance of the memory in which the settings are stored is exceeded, the SMD4 loads

defaults as identified above, and a fault indication is given, see section Faults.

Stepper motors work in steps, and as such the core unit of the SMD4 is steps. However, this is not always

meaningful in the end application, so instead you can choose a preferred unit to work in, including:

Meters, millimeters and microns

Inches and thou

Degrees, radians and revolutions

To use units other than steps, the displacement per step (distance the mechanism moves, per step) must

be correctly configured. The chosen unit applies globally, for example:

Command moves such as, move relative + 10 mm

Specify speed as 27 mm/s

Specify acceleration as 50 mm/s^2

Configure virtual limits at -100 mm and +100 mm

Persistence of settings

INFORMATION: Write endurance

The memory in which settings are stored has an endurance of about 1 Million write cycles. Only

use the store command when necessary, for example, take care that your application does not

perform multiple redundant store commands.

Remember to save your settings after making configuration changes!

Units

• 

• 

• 

• 

• 

• 

• 

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-status-flags-%28sflags
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-command-reference
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-faults


You can freely switch between like units (e.g. meters and inches), and between any unit and steps. All

values are automatically converted as required. There is no loss of precision when switching between

steps and other units. 

When working in units other than steps, your input may not translate into an integer number of steps. The

SMD4 rounds such values to the closest integer step value internally at the time of use and at the latest

possible point in the processing pipeline. Your original input is always preserved.

There can be a a significant number of parameters to configure to prepare the SMD4 for use with a

particular mechanism. This may include setting up encoders, limit switches, mechanism resolution and

others.

The SMD4 has built in presets for most standard AML mechanisms to allow you to get up and running with

a basic working configuration as quickly as possible. To use presets, locate the preset section in the

properties and search for your mechanism in the list. You can enter partial or full part numbers to find your

mechanism:

To use units other than steps, mechanism displacement per step must be configured correctly.

This is typically called resolution in the mechanism documentation and is discussed later.

Unpredictable behaviour may result if units other than steps are used and mechanism

displacement per step is not configured correctly.

Mechanism setup and presets

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/n2pimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/n2pimage.png


Click on the desired mechanism to select it and apply the preset configuration. Review the new

configuration by inspecting the SMD4 properties. Then, experiment cautiously to confirm that the

mechanism is behaving as expected. Start by making small moves at low speed until confident that the

setup is correct.

Points to note regarding presets:

Several basic settings are always made (selecting an appropriate unit, displacement per step,

encoder and limit switch configuration)

Only specific settings are changed according to the preset selected, all others are left

untouched. The list of changes the preset system will make varies by preset and is not

published. Presets reside in the SMD4 firmware and support for new mechanisms will be added

as required via firmware update.

Various features are configured but not necessarily enabled. For example, limit switches if

relevant are configured but no change is made to the global enable of limit switches, virtual

limits are configured if relevant, but the virtual limit function enable state is not changed.

If an encoder is applicable, autoflip is executed to determine correct encoder orientation. This

will cause the mechanism to move a small amount, see here. 

Motor currents and profile are not changed. It is the users responsibility to configure these as

required. This is discussed here.

Before running the motor, configure it first. A good order to approach this is:

Select temperature sensor

Configure motor currents

Configure profile (speeds, acceleration ramps etc.)

The settings required will depend on your application and mechanism. The default settings provided are

usually sufficient to get the motor spinning, but you'll need to adjust and refine these to suit. Read this

section to learn more.

Stepper motors move in discrete increments, called steps. Typically there are 200 steps per revolution.

When performed in quick succession, smooth continuous movement is possible. Precise movements can

Before using the preset system, review the remainder of this manual to gain a proper

understanding of the drive and how it operates, then return to this section.

1. 

2. 

3. 

4. 

5. 

WARNING: It is the users responsibility to verify the changes that the preset system has made

before using the mechanism, and to use appropriate caution and restraint in using the

mechanism until it has been established that setup is correct.

Basic motor configuration

• 

• 

• 

Steps

https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-encoder
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-motor-current


be made to a specific position by executing the desired number of steps. A step counter tracks the current

step count, and position can be determined.

The number of steps is determined by the mechanical configuration of the motor itself. The motor drive

applies varying patterns of current to the motor windings which pull the shaft to each motor step in turn and

this is what results in rotation. The current applied to the motor determines how much torque is generated,

and the rate at which the motor moves to each step position determines motor speed, called step

frequency.

When turning the motor shaft by hand, you can feel a small 'notch' as you pass each step. This is called

detent torque. The motor shaft aligns itself with the closest natural step position. Vacuum mechanisms are

usually, and should be where possible, designed with balanced loads such that when the mechanism is

moved to the desired place, the detent torque alone is enough to hold it in position and power can be

removed from the motor. 

When the motor moves according to the sequence of steps it is driven with, it is said to be in sync, or

maintaining synchronicity. Provided this condition is maintained, precise open loop control is possible.

Open loop control is where movement is planned and made based on the assumption that the motor

moved where it was commanded to.

Synchronicity can be lost under various circumstances, for example:

Motor not powerful enough to move load

Programmed acceleration is too fast for the motor to follow

Inertia in the load overcomes the motor

Loss of sync may result in lost steps or a stall, in which the motor shaft stops rotating, or does so

erratically.

Stepper motors are susceptible to encountering resonances; mechanical oscillations that occur at

particular operating points. Factors such as the mechanical load, speed and current all affect where and

over what range resonances can occur. Resonance can result in loss of sync and or stall. Mechanisms are

designed with this in mind, and aim to place any such resonances outside the applicable range of

operating points. Microstepping and changes to the motor profile, discussed in the next sections can also

be used to shift resonance points outside the desired area of operation.

AML motors can be supplied with either a K-Type thermocouple or PT100 RTD temperature sensor.

Ensure the sensor is connected to the thermocouple or RTD input on the motor connector, and make the

appropriate selection. The temperature sensor select command allows selection between thermocouple

and RTD.

Synchronicity

• 

• 

• 

Resonances

Temperature sensor selection



If the temperature sensor was absent, misconnected, or the wrong type of sensor was selected, the drive

may be in an error state which you'll need to clear before the motor can spin. See here for information on

clearing faults.

Different currents can be set for each phase of operation:

INFORMATION: The motor is disabled if the temperature sensor is misconnected, faulty or the

temperature measurement exceeds 190 °C in order to protect the motor from possible damage

to the insulation material.

Check that the motor temperature sensor selection matches that of your motor.

When using a thermocouple, avoid significant temperature gradients across the thermocouple

leads and connector on the SMD4.

Motor currents

Applies when

Acceleration Motor is running but not at target frequency, i.e.

during acceleration and deceleration. This allows

you to set a higher current during acceleration (to

overcome inertia of a large load, for example) and

revert to a lower current once the load is moving,

thus reducing motor power dissipation and ex‐

tending run time. If you do not wish to use this fea‐

ture, simply set acceleration current to equal run

current.

Run Current used when motor is at target run step fre‐

quency.

Must be set equal to or smaller than acceleration

current. If a change to run current makes it greater

than the acceleration current, the acceleration cur‐

rent is automatically adjusted to be equal to run

current.

Hold Motor is stopped and is only necessary where the

motor detent torque is not enough to prevent un‐

desirable movement of the load. The cost of using

hold current is increased motor temperature under

vacuum. Therefore, where possible, mechanisms

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-clearing-a-fault


When the motor starts moving, acceleration current is applied immediately. When the motor stops after the

deceleration, two additional states must be traversed before the acceleration current is reduced to hold

current, first, a configurable delay during which acceleration current continues to be applied (called

‘standstill’ state), followed by a configurable delay during which acceleration current is reduced to hold

current (called ‘going to standby’ state). This is shown in the graphic below:

Period after motor has stopped during which acceleration current is still applied. Adjustable between about

0 and 5.57 seconds using the ‘Power down delay’ setting [PDDEL]. Set to the minimum value suitable for

your application to minimise heat generated.

Period during which acceleration current is gradually reduced to hold current. This smooth transition

avoids a motor jerk on power down. Motor current is not continuously adjustable, instead being one of 31

discrete values from 0 to 1.044 A rms. Therefore, the current ramps down in steps. The step size may be

should be designed to be statically balanced, and

the hold current should be set to 0.

Standstill 

Going to standby

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-currents.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-currents.png


set between 0 (instant power down) and 327 ms using the ‘Current reduction delay’ setting. Set to the

minimum value suitable for your application to minimise heat generated.

Freewheel mode refers to how the motor is configured when it is at standstill and zero hold current is set.

There are three choices:

Use freewheel for minimum holding torque, which allows the motor shaft to be moved freely.

Phases shorted for maximum holding torque with zero power applied to the motor (and so no

heat generated in the motor).

Normal offers some minimal amount of holding torque as a result of the phases still being

connected to the driver circuitry.

Learn how to configure microstepping and dynamic motor properties, such as speed, acceleration and

deceleration. The profile settings apply for all modes except step direction mode.

The profile is configured with these general points in mind:

Meeting the speed and torque requirements of the application

Avoiding motor resonances that would disturb operation

Maintaining synchronicity, avoiding step gain or loss

Minimising temperature rise by using the lowest motor current required

The graphic below shows the basic profile:

Freewheel mode

• 

• 

• 

Profile

• 

• 

• 

• 



The term frequency is used throughout this manual in conjunction with motor dynamic properties, such as

start frequency, step frequency and so on. This is a reference back to the way a stepper motor works; it

rotates at a certain number of steps per second, or accelerates at some number of steps per second per

second.

However, as discussed here recall that you can specify all these values in your chosen unit such as mm/s,

or °/s^2. Where you see frequency, substitute you own unit as preferred.

The start frequency is the initial step rate, and helps to allow the motor to overcome inertia and start

moving smoothly; if start frequency were zero, the duration of the initial few steps might be long enough

that the motor would overcome inertia on the first step, then effectively stop for a period of time, then have

to overcome inertia once more for the second step, and so on, until the steps were frequent enough that

the motor remains moving.

Stop frequency is the counterpart setting which determines the frequency for the last step.

Frequency and units

Start and stop frequency

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-currents.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-currents.png
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-%C2%A0


Start frequency must be set equal to or smaller than stop frequency. This is enforced by the SMD4; if a

change to the stop frequency makes it smaller than the start frequency, start frequency is automatically

adjusted to be equal to stop frequency.

Start frequency and Stop frequency must be set equal to or smaller than Step frequency. The SMD4 will

not force Start and Stop frequency to match Step frequency if either Start or Stop frequency are smaller

than Step frequency.

The SMD4 uses linear acceleration and deceleration ramps; velocity ramps up between the start

frequency and the step frequency, and down linearly between the step frequency and stop frequency.

When using higher values for the start and stop frequency, a subsequent move in the opposite direction

would result in a jerk equal to start frequency + stop frequency. The motor may not be able to follow this.

The zero wait time setting can be used to introduce a short delay between the two and eliminate the jerk.

Microstepping is applicable at low step frequencies (typically < 500 Hz) and helps reduce motor

resonances resulting in smoother operation. In non-vacuum applications, it is also used to achieve

increased positioning resolution, however, it requires energising both motor phases continuously even

when the motor is stopped to maintain position, resulting in unacceptable levels of temperature rise in the

motor in vacuum applications. Instead, mechanisms are designed to achieve the required positioning

resolution with appropriate gearing.

Microstepping is not helpful at higher step rates, therefore, the SMD4 automatically switches between

microstepping at low speeds and full step at high speeds. The transition point from full step to microstep is

configurable, as illustrated below. Hysteresis is applied to this value resulting in the transition in the

opposite direction (from microstep to full step) being at a slightly higher frequency, as illustrated above.

Note that you cannot explicitly set the transition to full step point, only the transition from full step to

microstep. The other transition is calculated automatically.

Acceleration and deceleration

Zero wait time - Changing direction

Microstepping



The resolution to use during microstepping is configurable, via the microstep resolution setting [RES].

Choices are 8, 16, 32, 64, 128 and 256. In all modes except for step/direction, the motor is only stopped in

full-step positions. Microstepping is used exclusively for the purpose of smoothing the transition between

steps, not to increase resolution.

The accuracy with which motor profile (acceleration, deceleration, etc.) settings may be made depends on

the microstepping resolution; the maximum microstep resolution of 256 offers the greatest accuracy for

these settings.

Motor temperature can be read back from the remote interface, see command MOTOR:T. The motor is

shut down and the the drive enters a fault state if motor temperature exceeds 190 °C, or the temperature

sensor is faulty, missing, or incorrectly configured. 

The SMD4 keeps track of position using two counters, absolute and relative position. These can be reset

independently. The counters track motor step number, or index. The value may be fractional while the

motor is spinning because of microstepping. When stopped the counter is always an integer value

reflecting the fact that the drive only stops on full step positions.

The counters behave differently with and without an encoder:

Monitoring the motor

Temperature

Step/position counters

When the counter reports a fractional value, the fractional part reflects a proportion of a full step.

For example a counter value of 100.5 with microstepping resolution of 256 would mean the drive

is executing microstep 128 of 256 on its way toward full step position 101. You don't need to

consider microstep resolution when interpreting the counter value.

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/micro-stepping.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/micro-stepping.png
https://bookstack.vps-da8d40f3.arunmicro.com/link/51#bkmrk-tmot-%E2%80%93-motor-tempera


There are fundamentally two types of move that can be made. Regardless of how the move is initiated

(joystick, remote interface etc.) it resolves to one of these two types of move:

Therefore, the following basic moves can be made:

Move absolute

Move relative

Spin clockwise

Spin counterclockwise

No encoder Encoder used

Counters reflect the internal step index counters

that track the electrical step number that the drive

thinks the motor is on.

The step counters are used to plan movement. 

Provided the motor maintains synchronicity, this

will equal the motor position.

The counters are synchronized to the encoder po‐

sition whenever a positioning cycle completes.

The encoder position (not the step counters) are

used to plan moves, for example relative moves

are made against the encoder position, not the

step counters.

At all other times, the counters reflect the open

loop position.

When the encoder is used, it must be configured correctly for the step counters to work as

expected. Improper configuration can result in erratic behavior.

If the encoder and closed loop control (see here) are not used, then motor control is open loop.

Therefore, quantities such as position and velocity are determined from internal counters in the

SMD4. These cannot be relied upon in certain circumstances, such as if the motor is stalled, or

misses steps due to improper configuration.

Moving the motor

Position Spin

Move to an absolute position or by a relative dis‐

tance, for example:

Go to position 100 mm

Move + 5 mm

Move - 4 steps

• 

• 

• 

Move indefinitely in a given direction:

Spin clockwise

Spin counterclockwise

• 

• 

• 

• 

• 

• 

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-motion-control


The drive wraps these basic functions to perform more complex functions such as closed loop positioning

using an encoder, see here.

Direction is specified as positive, which results in the position counter incrementing, or negative which

results in the position counter decrementing.

When wired per instructions in this user manual, AML motors spin as follows, when viewed from the rear of

the motor:

The direction a mechanism moves in is not usually specified and depends on:

The particular mechanism and its gearing

Your perspective given the mounting orientation on the mechanism

You should therefore evaluate this in your application, and follow these instructions if required to flip motor

direction so that positive and negative directions correspond as required.

Specifying direction

Direction Shaft spins...

Positive Clockwise

Negative Counter-clockwise

• 

• 

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-motion-control
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-direction-clockwise.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-direction-clockwise.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-direction-anti-clockwise.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/motor-direction-anti-clockwise.png
https://bookstack.vps-da8d40f3.arunmicro.com/link/27#bkmrk-note-regarding-rever


Moves can be terminated at any time by stopping. There are several ways to stop:

The stop and emergency stop commands can originate from within the SMD4 without external input:

Emergency stop is raised when the SMD4 encounters a fault condition, see here.

During processes such as homing and closed loop control

Encoders allow the real mechanism position to be read, independent of position as determined by the step

count. Encoders make closed loop control, in which the actual position and target position are continuously

monitored and the corrections automatically made to minimise error, possible.

Supported encoders fall into two broad categories, incremental and absolute. Both are available in linear,

angular and partial arc forms to suit different mechanisms. Both involve a scale and readhead.

The scale is typically a microscopically patterned thin metal strip affixed to the bed of the mechanism. The

readhead is a small optical module attached to the carriage of the mechanism and reads the scale as it

passes underneath. The scale is always sized such that the readhead can see it at any point within the

physical travel of the mechanism.

Stopping

Stop Quick stop Emergency stop

Motor will decelerate to a stop

using the current profile.

The deceleration profile is trun‐

cated as required to cause the

motor to come to a full stop with‐

in 1 second.

The original profile is unmodi‐

fied.

If the existing profile would bring

the motor to a stop in under 1

second then that profile is used.

Immediate full stop, and cut all

electrical current to the motor.

The motor is inert and un‐

powered.

The internal position counters

become invalid because syn‐

chronicity is lost.

• 

• 

Encoders

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-faults


The SMD4 works with most incremental and absolute encoders meeting the requirements given here.

Support for other encoder types may be added via firmware update, for example supporting word lengths

other than 26 bits for absolute BiSS encoders; please contact us for details.

Incremental scales feature a repeating pattern. The readhead outputs quadrature A and B sine waves that

encode the readhead position and direction as it passes over marks on the scale. These are passed to an

interface external to the SMD4 which interpolates and outputs digital A and B quadrature signals. These

signals drive a counter in the SMD4 encoder interface module which represents position.

The position is volatile and stored only in the counter on the SMD4, unlike in the case of the absolute

encoder. The incremental encoder only provides pulses which are used to increment or decrement a

Supported types

Incremental encoders overview

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/vsm23-x-ea-encoder-illustration.jpg
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/vsm23-x-ea-encoder-illustration.jpg
https://bookstack.vps-da8d40f3.arunmicro.com/link/26#bkmrk-copy-from-smd4-datas
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-12/smd4-er-cabling-diagram.jpg
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-12/smd4-er-cabling-diagram.jpg


counter according to direction of travel. If power is lost, the count is lost. If the mechanism is moved while

powered off, there is no way to detect this.

An external interface sits between the encoder readhead and the SMD4. This is provided with the encoder

supplied with the mechanism. These are specified with an interpolation factor, for example 20x.

Incremental scales are specified with a pitch, for example 20 um. The interface interpolates this to increase

the resolution, for example a 20x interface and 20 um pitch scale = 20 um / 20 = 1 um resolution.

Incremental encoders have several additional functions:

P and Q limits - For linear scales, small magnets can be placed to mark limit points. The

magnets are detected by the readhead and trigger a limit signal. Read the instructions for your

mechanism to learn more.

Error - An error signal is activated if for example, the readhead cannot read the scale properly.

Z reference - Precision reference marks are placed on the scale. For angular scales, there is

one mark, for linear scales there are multiple marks placed at fixed intervals, and the desired

mark is selected by a small magnet placed next to it. When the readhead approaches the mark

from either side, the Z signal is triggered. This can be used for establishing a datum position.

Read the instructions for your mechanism to learn more.

The electrical interface requires these pins:

• 

• 

• 

Name Function

A+ Quadrature 'A' signal

A-

B+ Quadrature 'B' signal

B-

Z+ Quadrature 'Z' signal

Z-

P Limits and error signals

Q

E

0 V Power

5 V



This generally requires a 15 way D-Sub feedthrough or similar. The pin count can be reduced to an

absolute minimum of 6 pins, if the P, Q, E and Z signals are not required. The E signal is optional on the

SMD4, and can be disabled/ignored if not required although this is not recommended.

Communication with the readhead is via a digital coms interface, and data are sent to the SMD4 from the

readhead in packets verified by a CRC. The readhead connects directly to the SMD4 encoder interface

module.

Absolute scales are patterned in such a way that the readhead can determine without any prior reference

exactly where it is positioned, much like looking at a ruler. The absolute encoder therefore knows its

absolute position at any time. The electronics can be powered off, the mechanism moved, and powered

back on, and the readhead can still determine its absolute position.

Absolute encoders are specified by their resolution, for example 50 nm/count. The readhead outputs an

absolute count value representing the position on the scale, from zero at one end, increasing toward the

other end. The maximum count you will see for a given mechanism depends on the encoder resolution and

scale length.

The scale cannot be positioned with micron level accuracy, so the zero count will not align with either end

of the mechanism and there will always be a small offset. This also accounts for thermal effects, allowing

extra scale at the ends of travel. For example, on a 50 mm linear stage, positioned at the negative extreme

of travel might read a count of 46789, corresponding to a position of 50 nm x 46789 or 2.34 mm. Use the

zeroing features of the SMD4 to set your own zero point.

Linear and partial arc scales start at zero and the maximum count depends on the length. For a 50 nm

resolution system on a 50 mm scale the maximum count is at least 50e-3/50e-9 = 1e6. We can also infer

... For a total pin count of 11 pins

Absolute encoders overview

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/smd4-ea-cabling-diagram.jpg
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/smd4-ea-cabling-diagram.jpg


from this that the maximum length scale for this 50 nm system with 26 bit BiSS is 50 nm * 2^26 or about

3.3 m.

Angular (circular) scales count from zero to the maximum value then back to zero. For a 26 bit system, this

means the count goes from 0 to 2^26 - 1 the next count on from 2^26 -1 is 0.

The scale is generally patterned at a much larger pitch than the published resolution, because the

readhead uses interpolation techniques to obtain the published resolution. 

The electrical interface requires these pins:

The much reduced pin count and simplicity of absolute encoders versus incremental makes them ideal for

vacuum use. The overall system requires fewer components, less space, fewer feedthrough pins in

addition to the advantages of having an absolute readout.

The SMD4 treats all encoder input as absolute. When an encoder is online and selected, the encoder is

used to plan all movements. Moves you command are with respect to the encoder position, not the step

counters. If any error occurs with the encoder in use, then a fault is triggered and the motor is disabled.

When an encoder is enabled, you can read speed and position data directly from it, as well as use it for

functions such as closed loop control and virtual limits. These additional functions are discussed later.

It is essential that the encoder is correctly setup before use, otherwise unpredictable behaviour will result. 

Incremental encoders can in theory be treated as absolute provided that:

An initial reference is established at first power on

The save features of the SMD4 are utilised to save positions before power off

Name Function

MA+ Clock

MA-

SLO+ Data

SLO-

0 V Power

5 V

... For a total pin count of 6 pins

Handling of encoders

Special considerations for incremental encoders

• 

• 



The mechanism is never disturbed when the SMD4 is off

Encoder operation is never interrupted

In practice, even if close attention is paid to these points, effects such as thermal expansion and

contraction cannot be accounted for when powered off. As such, incremental encoders are usually used

with a reference switch or other means to establish a fixed reference at power up if absolute position is

important.

To allow for more than one rotation to be tracked (recall that absolute angular encoder rings count from 0

to a maximum value, with the next count being 0) the SMD4 treats the absolute encoder in a pseudo

incremental manner. This involves two counters, the 26 bit unsigned integer count from the readhead

(readhead count), and a 64 bit signed counter maintained on the SMD4 (SMD4 count):

At startup, SMD4 count is set equal to readhead count

As the SMD4 runs, the readhead count is sampled rapidly, and the difference between this and

the last readhead count is added to the SMD4 count

The properties of wraparound integer arithmetic ensure the proper behavior when the readhead counter

crosses over the maximum count to zero, or vice versa, boundary.

This allows (at least during the power on time of the SMD4) multiple rotations to be tracked, and the

availability of all encoder functions. For example, closed loop control could be used to home to a location of

100.5 revolutions, or virtual limits used to prevent a rotary mechanism from rotating too many times and

tangling its leadout wires.

Having connected the encoder and powered on follow these steps to manually configure an encoder.

Values for settings required here can be found in the documentation supplied with your mechanism. This

section assumes the drive is otherwise configured and working.

Alternatively, use the SMD4s built in presets functionality to automatically configure these settings to suit

your mechanism, see mechanism setup and presets.

• 

• 

Special considerations for absolute angular encoders

1. 

2. 

Setting up an encoder

St

ep

Details

1 Check encoder indicator

lights

Check indicator light on encoder is on. There might be more

than one light.

For Renishaw encoders shipped with AML mechanisms,

provided the light or lights are on and any color other than

red, you may proceed. A red light usually indicates a fault

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-mechanism-setup-and-


This feature uses an encoder to automatically minimise positioning errors. The SMD4 works continuously,

monitoring position and adjusting the mechanism to your target position.

which should be fixed before proceeding. Refer to the docu‐

mentation provided with the mechanism for more details.

2 Select the encoder Set encoder selection to incremental or absolute as re‐

quired, and decide if the error signal should be used (incre‐

mental only)

3 Set units Configure the units (degrees, meters etc. to suit your mech‐

anism if not already done so).

It may be convenient to set a unit here that matches that in

the mechanism documentation.

4 Set mechanism displacement

per step

This is the distance moved by the mechanism per step, usu‐

ally referred to as the resolution in user documentation.

5 Check mechanism direction Make one or more small moves and verify that directions are

as you expect. If not, then see here to reverse motor direc‐

tion.

6 Set displacement per count This is the distance moved per encoder count. For example,

for linear absolute encoders this might be 50 nm. If units are

set to meters, you can simply enter 50e-9.

7 Determine flip The direction of the encoder scale must match that of the

motor, i.e. when the motor moves in a positive, incrementing

direction, the encoder must also.

A flip option allows the encoder to be virtually flipped to

match the motor direction. An autoset feature is available;

use this to automatically set flip as required. The motor will

move a small distance to do this, and will return to its original

position when complete.

8 Zero the encoder Position the mechanism at the desired zero point, either us‐

ing the motor or by hand, then reset the absolute and relative

counts as required. Finally use the save/store to device func‐

tion to save your changes.

Closed loop control (Endpoint correction, EPC)

https://bookstack.vps-da8d40f3.arunmicro.com/link/27#bkmrk-note-regarding-rever


Without an encoder, the SMD4 can only function in open loop mode. In open loop control, the SMD4

generates the required number of steps to perform the requested move and assumes that the motor

moved the corresponding amount. There is no feedback to the SMD4 that the motor moved as expected.

This approach works well with stepper motors because provided they maintain synchronicity fast accurate

movements can be made without the need for feedback. This reduces cost, complexity and requires fewer

components in vacuum.

In closed loop control, the SMD4 monitors the actual position of the mechanism via the encoder, and

corrects for deviations when they occur.

Closed loop control on the SMD4 works using a method called Endpoint Correction, or EPC. In traditional

closed loop control, actual and demand positions are continuously monitored, and a control algorithm

adjusts motor movement to compensate out any errors. Proportional, integral and derivate gains are

configured to obtain the desired system characteristics in terms of responsiveness, overshoot, undershoot

and residual error.

EPC uses a different approach. A simple explanation, omitting some detail, is that every movement is

initially made open loop. When the open loop move has completed, the actual and target positions are

compared and position error determined. If the error falls below a user specified threshold, nothing more is

done and the move is complete. If the error exceeds the threshold, a second move is made, again open

loop, to try and eliminate the error. This process is iterative and continues either until the error has reduced

below the threshold, or a specified maximum number of iterations of adjustment have occurred.

Once a move has completed, EPC continuously monitors position error and makes further adjustments if

the error exceeds the threshold. In this way, EPC responds to events such as thermal effects or

disturbance of the mechanism even when stopped.

Baseline error after each cycle of EPC is tracked, and cumulative error is considered for the next cycle.

EPC is optimised for vacuum use and allows closed loop control while minimizing temperature rise with

little effort required by the user to configure it.

Defines what the feature should do:

None – Feature is disabled/inactive

Warn – Feature is enabled, and can raise a warning on alarm

Error – Feature is enabled, and can raise an error on alarm

Introduction to closed loop control

How it works

Configuration

Behavior

• 

• 

• 



An alarm is the feature raising a notification. A notification is not necessarily an error, and the meaning is

different for each feature. You can choose to route the alarm to a warning, or an error as described above

by the behavior option.

Warnings are recorded but cleared automatically on the next successful move.

Errors are recorded and put the drive into a global fault state stopping the motor. An error must be cleared

by the user to restore normal operation.

Maximum number of moves that EPC will make to correct position after the open loop positioning phase is

completed. This can be set to a finite value or infinity, in which case the number of allowed moves is

unlimited.

The moves count is zeroed at the start of each commanded move, and when a move successfully

completes. If the mechanism is disturbed when stopped, a new cycle of corrections begins with the move

count starting at zero once more.

When error reduces below this value, the move cycle is considered complete. The minimum value possible

is half the mechanical resolution of the mechanism. Minimising tolerances results in more accurate

positioning, at the expense of more adjustment and greater sensitivity to responding to disturbances.

Larger tolerances result in less accurate positioning.

An alarm is raised when:

Maximum number of positioning iterations exceeded for this move

The specified tolerance is impossible to meet given the mechanism resolution

Virtual limits are limits defined based on position. 

When configured, range of motion is limited to the range specified. Demand position is adjusted if required

to prevent the motor moving outside the specified range. For example, if a continuous rotation is

demanded, and a virtual limit exists in that direction, your command is converted into a move to the virtual

limit position. The motor will come to a stop at the limit using your specified profile.

If an encoder is present and the mechanism is forced outside the range of the virtual limit by an external

means (for example, the mechanism is forced by hand) this is reported to the user.

Maximum iterations

Tolerance

Alarm behaviour

• 

• 

Range of motion limiter (Virtual limits, ROML)



This feature will work without an encoder, in which case the position is open loop and taken from the

internal step counters.

As here.

These define the two virtual limits. There is no requirement for them to be in any particular order, for

example value one might be 4 mm and value two -4 mm.

Alarm is raised when:

Movement outside the virtual limits is commanded (even though ROML will adjust the

commanded move to prevent that happening)

The mechanism is externally forced outside the limit range. This is only applicable to the

encoder.

This feature is like ROML, except that it does not adjust your input to prevent movement outside the

specified range, and only warns or generates an error after movement outside the specified range has

occurred.

This feature will work without an encoder, in which case the position is open loop and taken from the

internal step counters.

As here.

These define the two virtual limits. There is no requirement for them to be in any particular order, for

example value one might be 4 mm and value two -4 mm.

Configuration

Behavior

Value one and two

Alarm behaviour

• 

• 

Guard

Configuration

Behaviour

Value one and two

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-behavior
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-behavior


Alarm is raised when:

Movement outside the virtual limits is commanded

The mechanism is externally forced outside the limit range. This is only applicable to the

encoder.

Alarm behaviour

• 

• 

Using the joystick

The joystick is a two button controller on coiled lead that plugs into the

front panel. 

Use the right button for movement in the positive direction, and the left for

movement in the negative direction. All moves occur according to the cur‐

rent profile in the drive.

It is available any time it is plugged in and enabled (see operating

modes), and has several modes of operation. It is a quick and easy way

to simply move the mechanism without touching it. This can be useful

during commissioning, or even as the primary means to control you

mechanism.

Single Brief press to move one step, hold to move continuously, release button to stop

Continuous Brief press to start moving continuously, subsequent press to stop

Nudge Brief press to trigger a user defined relative move, called a nudge. Subsequent press

stops

Single

A short button press (< 0.5 s) causes a single

step in the commanded direction. This is useful

for precise positioning.

A long press (> 0.5 s) triggers acceleration to‐

ward the target frequency, while the button con‐

tinues to be pressed.

Releasing the button causes the motor to deceler‐

ate toward a stop.

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-operating-modes
https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-operating-modes
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/gpQimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/gpQimage.png


If the button is pressed while the motor is still de‐

celerating, the motor once more accelerates to‐

ward target frequency for as

 long as the button is held.

Continuous

Motor accelerates toward target frequency on joy‐

stick key down. Continuing to hold the key down

has no further effect.

On releasing and pressing the same key again,

the motor decelerates toward a stop.

On pressing the alternate direction key, motor first

decelerates to a stop before accelerating toward

target frequency in the other direction.

If the motor has not yet come to a stop, and the

same key is pressed again, the motor will once

more accelerate towards target frequency, as il‐

lustrated left.

Nudge/Relative move

Trigger a pre-defined relative move with the joy‐

stick.

You specify the distance, or nudge value, and

trigger the move to start in the desired direction

according to which joystick button is pressed.

On pressing a joystick button, a relative move of

the specified distance and direction is made.

If any button is pressed while the move is in pro‐

gress, the motor decelerates to a stop and the

commanded move is not completed.

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/nudge-relative-move.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-11/nudge-relative-move.png


Some mechanisms include one or more limit switches, positioned typically at the limits of travel or other

reference position.

Homing is an automated procedure where the motor is driven to a chosen limit switch in a precise and

repeatable manner. Most users then reset the position counters, and use that position as a reference going

forward. 

Homing only works with physical limit switches.

You can choose to home in the positive or negative direction.

The motor first moves toward the limit switch using the existing movement profile. On the limit switch being

triggered, the step frequency is halved, and the motor reversed until the limit switch is not triggered.

Finally, the motor moves toward the limit switch at a step frequency of 30 Hz until the limit switch is

triggered. 

Motor movement is controlled by externally supplied step and direction signals. There are two sub modes,

normal and triggered.

Set the mode to step and direction to use this function. Once in step direction mode, motor movement can

only be controlled via the step direction interface, and not via other means such as the joystick or remote

interface.

The nudge value is signed, and the relative move performed is the product of the button and nudge

value. The negative button multiplies the nudge value by -1, and the positive button +1. For example, if

the nudge value is -100, and the negative joystick button is pressed, then the relative move made will

be -100 * -1 = 100.

Homing to limit switches

Homing cycle

INFORMATION:

Limit switches are not latching, i.e. as soon as a limit input becomes not triggered, for example if

the mechanism is able to first actuate a limit switch and then continue moving past it until the limit

switch is no longer actuated, then the SMD4 will be unaware of this and will continue to drive the

motor if commanded.

Limits switches and cams are normally arranged such that the limit switch is triggered from the

desired point up to and including the point at which the mechanical limit of the mechanism is

encountered.

Step and direction interface



The SMD4 can be configured to step on the rising or rising and falling edges, which halves the step clock

rate required.

The external enable fault is non-latching when in step direction mode; once the external enable state is

restored, or the external enable setting is changed to false, normal operation will resume immediately

without the need to clear it.

Steps are generated according to the current resolution. For example, with the edge setting on rising only,

and microstep resolution set to 128, each rising edge on the step input will generate a single 1/128th step. 

A step interpolation option is available; when enabled, the step input behaves as it would with the current

resolution, except that each step input is interpolated to 256 microsteps. This is done by evaluating the

rate at which steps arrive and timing 256 microsteps within the step-to-step period. This gives all the

benefits of microstepping at high resolution while minimising the input clock rate.

The relationship between step input, resolution and actual step frequency is given below:

Motor Step frequency [Hz] = (Step input [Hz] / Resolution)

This mode works the same as joystick continuous mode, except that the positive and negative inputs that

would normally be supplied via the joystick input are instead generated from the step and direction inputs:

Normal mode

Step input  Direction input

Both Rising only Meaning

Rising Step Step Low Positive

Falling Step High Negative

INFORMATION: Stopping on fractional steps

There is no mechanism to prevent the motor from stopping on fractional steps as there is in all

other modes.

Stopping on fractional steps will result in the motor temperature rising much faster than it

otherwise would and is generally not suitable for vacuum applications. Therefore, configure the

external step generator to meet this criteria.

INFORMATION: Preparation before switching out of Step/Direction mode

When changing to another mode from Step/Direction mode, ensure that any movement being

commanded via Step/Direction interface has completed, and that the motor is at a full step

position before switching.

Triggered mode

https://bookstack.vps-da8d40f3.arunmicro.com/link/28#bkmrk-joystick


In the case of Step/Direction mode, it is the responsibility of the external controller to perform any final

activities, such as coming to a stop, before changing the mode.

Heats the motor by energising both phases and holding the motor stationary, regulating the current to

achieve a set point temperature. Used to drive off adsorbed moisture in the motor.

Set the mode to bake to use this function.

Before engaging bake mode, set the target bake temperature. When in bake mode, the green status

indicator will flash briefly at intervals as a reminder that this mode is active.

An enable input is present as part of the SDE interface, but the enable signal may be used in any mode.

The motor is enabled when high and disabled (all motor movement inhibited) when low.

The enable input is ‘gated’ by an external enable setting; when enabled, the behaviour described above

applies. When disabled, the enable input is treated as if it was true, regardless of the actual state. This

allows the user to decide whether the enable input is used or not.

When the enable input is not used, then the SMD4 is responsible for enabling the motor as required,

consistent with any other requirement described in this document.

Step input  Direction input

Meaning Meaning

Rising
Triggers start /

stop
Low Positive

Falling No action High Negative

Bake

Enable input

Enable input

Setting enabled Setting disabled

Low Motor disabled Motor enabled

High Motor enabled Motor enabled



Limits

Mechanisms sometimes include limit switches, typic‐

ally mechanical switches positioned to open or close

when some start or end point of travel is reached for

example. This is used as a trigger to stop the motor

Configuration options allow limits to be individually or

globally enabled or disabled, polarity to be set (i.e.

trigger limit on switch open, called ‘Active low’ or

switch closed, called ‘Active high’). The configuration

options are illustrated below. AML Device control

software additionally allows each limit to be given a

custom name, for example ‘right switch’ to make it

easier to identify within the software.

Limit activation summary in relation to direction

Limit + (Pos)

triggered

Limit - (Neg)

triggered

Positive Motor disabled Motor enabled

Negative Motor enabled Motor disabled

Limits are intended for use with the mechanical

switches typically found in vacuum mechanisms, but

other types of switch, for example, hall effect or optic‐

al limit switches can be interfaced. The high and low

logic thresholds are 1.5 V and 0.55 V respectively.



If a fault occurs, the motor is stopped and power to the motor is removed. The cause of the fault is

indicated via the red front panel indicator, as shown below, and reflected in the error flags available via the

remote interface. 

Limit inputs can withstand up to 12 V maximum. The

limits input circuit is outlined below for reference.

Faults

Types of fault

Internal

A hardware or software malfunction inside the

SMD4. For example, user settings have become

corrupted and failed to load properly.

External enable criteria not satisfied

The external enable setting is ‘true’ and the SMD4

requires the external enable signal to be high to

enable the motor. Either supply an enable signal,

or if you do not wish to use the enable input, dis‐

able the external enable setting by setting it to

‘false’, which tells the SMD4 to ignore the state of

the enable signal.

Motor temperature

Motor temperature has exceeded 190 °C or a fault

has been detected with the temperature sensor.

Excessive temperature can damage the insulation

on the motor windings, and the SMD4 does not al‐

low the motor to be driven. The SMD4 shuts down

the motor before this can happen to prevent pos‐

sible damage to the motor. Wait for the motor to

cool before attempting to run the motor again.

INFORMATION: The motor is also
disabled if the temperature sensor is
misconnected or fault in order to pro‐
tect the motor from possible damage
to the insulation material.



Faults may be cleared using the clear command, or by pulling the fault reset pin to the ‘GND’ pin the I/O

connector.

The external enable fault is non-latching when in step direction mode; once the external enable state is

restored, or the external enable setting is changed to false, normal operation will resume immediately

without the need to clear it as described above.

Motor short

A motor short has been detected. Motor phase-to-

phase and phase-to-ground shorts can be detec‐

ted by the SMD4. Inspect the motor and wiring to

resolve before attempting to run the motor again.

Limit hit

Indicator flashes briefly once a second. A limit has

been triggered and has stopped the motor.

Clearing a fault


	Operation
	Advanced users, system integrators
	Operating modes
	Persistence of settings
	Units
	Mechanism setup and presets
	Basic motor configuration
	Steps
	Synchronicity
	Resonances

	Temperature sensor selection
	Motor currents
	Standstill
	Going to standby
	Freewheel mode

	Profile
	Frequency and units
	Start and stop frequency
	Acceleration and deceleration
	Zero wait time - Changing direction
	Microstepping

	Monitoring the motor
	Temperature
	Step/position counters

	Moving the motor
	Specifying direction

	Stopping
	Encoders
	Supported types
	Incremental encoders overview
	Absolute encoders overview
	Handling of encoders
	Special considerations for incremental encoders
	Special considerations for absolute angular encoders
	Setting up an encoder

	Closed loop control (Endpoint correction, EPC)
	Introduction to closed loop control
	How it works
	Configuration
	Behavior
	Maximum iterations
	Tolerance

	Alarm behaviour

	Range of motion limiter (Virtual limits, ROML)
	Configuration
	Behavior
	Value one and two

	Alarm behaviour

	Guard
	Configuration
	Behaviour
	Value one and two

	Alarm behaviour

	Using the joystick
	Single
	Continuous
	Nudge/Relative move

	Homing to limit switches
	Homing cycle

	Step and direction interface
	Normal mode
	Triggered mode

	Bake
	Enable input
	Limits
	Faults
	Types of fault
	Clearing a fault



