
The SMD4 is compatible with the AML Device Control software, which can be downloaded from the

Software page on our website: https://arunmicro.com/documents/software/

Connect all SMD4 devices to your computer 

Start the AML Device Control software and click ‘Add device’ in the top left corner 

USB connected SMD4 devices should automatically appear in the list. Select all devices that you wish to

add and click “Add n selected devices”

Software

Installation and setup

• 

If you intend to ultimately connect via LAN or Serial, start off by using the USB

interface to perform basic setup on the LAN or serial interface first, then once satisfied

connect on LAN or Serial as required. 

Multiple instances of the same physical SMD4, but on different interfaces are allowed.

For example, you could plug in the SMD4 with a network cable and USB lead, add the

device connected via USB, configure network settings, then add device again as a

network device. This can be useful during commissioning in establishing a working

setup.

• 

https://arunmicro.com/documents/software/


https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/tVkimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/tVkimage.png


The default layout of the software is shown below. 

The speed of auto detection varies by interface quantity of ports on your PC. Detection of USB

and LAN devices is typically quick, whereas detection of devices connected via RS232 or

RS485 can be considerably slower if a large number of COM ports are present on the PC. 

The SMD4 network interface has an implementation of SSDP (Simple Service Discovery

Protocol) which allows it to be discovered easily on a network, without knowing it's IP address.

Overview

Project panel
Shows a list of the devices and
scripts in the project. Currently se‐
lected devices are highlighted. Mul‐
tiple devices can be selected by
holding down CTRL and clicking.
The device properties panel shows
the properties for the selected
device(s).

Right-clicking on an empty area
within the project panel presents a
context menu, with options to add
new devices, new scripts or import‐
ing scripts.

The right-click context menu on
each device provides access to
functions such as clearing faults or
placing the selected device into
ident mode in which the green
status indicator flashes.

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/download.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2023-10/download.png


A status indicator next to each device shows the current status of each device according to these colours:

Select one or more devices in the project panel; their properties are displayed and can be edited here. A

blank is shown for properties which are different across the selected devices. As each property is selected,

help text appears at the bottom of the panel describing the configuration option in more detail.

Some properties allow selection of one of several choices, for example, temperature sensor

selection:

Others such as ‘Run current’ simply require a numeric value to be entered

Others allow values to be entered directly, or the three dots button to the right to be clicked. This

opens a window, allowing a more complex value to be input, for example, ‘Acceleration’ allows

input in the native units or seconds:

Colour Description

Device connected and ready

Bake mode running, limit switch triggered or joy‐

stick connected

Device in a fault state

Device disconnected

Device properties panel

• 

• 

• 



Controller windows for each device appear in this area. Windows can be arranged as desired and will

automatically ‘snap’ to a grid making it easy to keep them neatly organised.

System work area

Controller window
Shows a status summary for the selected device,
providing essential information such as actual velo‐
city, actual (absolute) position, relative position and
error status.

Absolute and relative position counters may be reset

using the   icons.

For controlling an SMD4, choose the type of motion
and click start or stop. Multiple SMD4 devices can be
controlled using the motion controls on the ribbon:

Be aware that the synchronisation between multiple SMD4s is not specified or guaranteed when

controlling them in this way; delays within the computer, software, and data connection to the

https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/wcaimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/wcaimage.png
https://bookstack.vps-da8d40f3.arunmicro.com/uploads/images/gallery/2024-02/wcaimage.png


Contains buttons for all actions. Within the software, buttons can be hovered over for more information.

SMD4 configuration is maintained in two locations:

The SMD4 itself, with the use of the ”Save to device” command. If the “Save to device”

command is not used, settings will revert to their previous values on power cycling.

In the software project file.

The behavior of the software in relation to this is as follows:

If the serial number of a connected SMD4 matches that of one in the project file that is

open: The configuration given in the project file prevails, and the SMD4 configuration is

synchronised to match that in the project file. Note that unless you use the save changes to

hardware function, the original configuration of the SMD4 is not overwritten, and will be restored on

power cycle or by using the load command to restore the configuration from flash.

If the serial number of a connected SMD4 does not match any of those in the project file

that is open: The SMD4 is considered a new device in the project, and the project file will be

initialised from the configuration found in the SMD4 itself. After this point, the first behaviour outlined

above applies.

SMD4 mean that each SMD4 will start or stop its motion at a slightly different moment, therefore

this option is not suitable for performing complex co-ordinated movements across multiple axes.

Ribbon

Saving projects

1. 

2. 

INFORMATION: In the first case above, configuration items that require the SMD4 to be in

standby will not be correctly synchronized if the SMD4 is not in standby when the software

connects.

Scripting
The software includes an easy to use script editor,
that allows for sequences to be programmed and ex‐
ecuted on multiple connected SMD4 devices, as well
as system level operations such as adding and re‐
moving SMD4 devices from the project.

The scripting language used is JavaScript; this is
powerful, easy to use and extensively documented. A
global ‘smd’ object is made available from which you
perform all interactions with the SMD4s. Type ‘smd.’
and an auto completion popup appears, showing all



A brief description of each function/command is presented below the scripting section. Here is an overview

of the scripting area:

The auto completion popup can be shown using the ‘Ctrl-K’ keyboard shortcut.

Information on the available SMD4 device specific commands can be found in section USB of this manual.

Serial command mnemonics will be auto completed by the script editor. The arguments of each scripting

function are identical to those shown in section Command Reference, however, the format of querying and

commanding is different. The example below shows how the SMD4 mode can be set and queried:

The ribbon contains scripting specific buttons.

available commands, as well as help documentation
for each. Press the enter key to select an option, then
provide any arguments required.

smd.Mode(2);

smd.Mode();

// Set the SMD4 mode to 2 (remote)

// Query state of mode

https://bookstack.vps-da8d40f3.arunmicro.com/link/50#bkmrk-usb
https://bookstack.vps-da8d40f3.arunmicro.com/books/smd4-user-manual/page/communications-protocol#bkmrk-command-reference


Function specific to the SMD4 software

Function Description

Add bool Add(string serial)

Add a new device to the project.

Returns true if the device has been detected and
added to the project.

serial:

Device serial number.

ClearLog void ClearLog( )

Clear command line.

ConnectAll void ConnectAll( )

Connect all devices in the project.

Delayms void Delayms(int value)

Delay in milliseconds.

value:

Minimum: 0

Maximum: 2^31 -1

DelaySeconds void DelaySeconds(int value)

Delay in seconds.

value:

Minimum: 0

Maximum: 2147483

DisconnectAll void DisconnectAll( )

Disconnect all devices in the project.

Log void Log(string value)

Print value to the command line.

Name bool Name(string serial, string name)

Change name of the device.

Returns true if the device has been found and

name changed.

serial:

Device serial number.

name:

Device new name.



Functions that query the SMD4 and that are not also available as a remote command are listed below. 

The order of the array elements matches the order in which the SMD4 devices are selected. For example,

suppose the “X-axis”, “Y-axis” and “Z-axis” named devices were selected with the command

“smd.Select(“Z-axis”, ”X-axis”, ”Y-axis)”, to check the standby flag of the “Z-axis” device, use

MotorStandbyFlag()[2]. Notice that array indices are 0 based.

Remove bool Remove(string serial)

Remove a device from the project.

Returns true if the device has been detected and

removed from the project.

serial:

Device serial number.

RemoveAll void RemoveAll( )

Remove all devices from the project.

Select bool Select(string[ ] devices)

Returns true if all the requested devices have
been selected.

devices:

Name of the device(s).

SelectAll void SelectAll( )
Select all devices.

SelectNone void SelectNone( )

Deselect all devices.

Note that these all return an array rather than a single value, with each array element

corresponding to the data from one SMD4. Use the array index syntax to access the desired

element. This applies regardless of the number of devices.

For example, if there is only one SMD4 connected, use BakeActiveFlag()[0] to get the state of the

bake active flag for that device.

Function Description

BakeActiveFlag bool[] BakeActiveFlag()

Returns true if the bake mode is running.

ConfigurationErrorFlag bool[] ConfigurationErrorFlag()

Returns true if the motor configuration is corrupt.

EmergencyStopFlag bool[] EmergencyStopFlag()

Returns true if the motor is disabled by software.

ExternalEnableFlag bool[] ExternalEnableFlag()



// Add device with serial number 20054-027

smd.Add("20054-027");

// Set name of device with serial number 20054-027 to MyDevice

smd.Name("20054-027","MyDevice");

Returns true if the external enable input is high.

ExternalInhibitFlag bool[] ExternalInhibitFlag()

Returns true if the external enable input is dis‐

abling the motor.

IdentModeActiveFlag bool[] IdentModeActiveFlag()

Returns true if the ident mode is active.

JoystickConnectedFlag bool[] JoystickConnectedFlag()

Returns true if the joystick is connected.

LimitNegativeFlag bool[] LimitNegativeFlag()

Returns true if the negative limit is active.

LimitPositiveFlag bool[] LimitPositiveFlag()

Returns true if the positive limit is active.

MotorOverTemperatureFlag bool[] MotorOverTemperatureFlag()

Returns true if the motor temperature is greater

than 190 °C.

MotorShortFlag bool[] MotorShortFlag()

Returns true if a motor phase to phase or phase to

ground short has been detected.

MotorStandbyFlag bool[] MotorStandbyFlag()

Returns true if the motor is stationary.

TargetVelocityReachedFlag bool[] TargetVelocityReachedFlag()

Returns true if the motor is at the target step fre‐

quency.

TemperatureSensorOpenFlag bool[] TemperatureSensorOpenFlag()

Returns true if the selected temperature sensor is

open circuit.

TemperatureSensorShortedFlag bool[] TemperatureSensorShortedFlag()

Returns true if the selected temperature sensor is

shorted (not applicable to thermocouple)

Example scripts

Add device, rename and set device properties



// Select device with name MyDevice

smd.Select("MyDevice");

// Set the acceleration and deceleration rate in Hz/s

smd.Acceleration(100);

smd.Deceleration(100);

// Set the acceleration current

smd.AccelerationCurrent(1.044);

// Set the hold current

smd.HoldCurrent(0);

// Set the run current

smd.RunCurrent(0.5);

// Set the start frequency

smd.StartFrequency(10);

// Set the step frequency

smd.StepFrequency(1000);

// Set the frequency at which the drive transitions to full step

smd.MicrostepTransition(500);

// Set the micostep resolution

smd.Resolution(64);

// Select device and set mode to remote

smd.Select("MyDevice");

smd.Mode(2);

// Move +100 steps, then -500 steps, and finally +100 steps

// "MoveRelative" executes synchronously, i.e. the motor must arrive at its destination position before the

next line of code executes

smd.MoveRelative(500);

smd.MoveRelative(-500);

smd.MoveRelative(100);

// Log the finishing step position to the command line output area

smd.Log(smd.ActualPosition()[0]);

Execute a series of movements, illustrating synchronous move
commands



// Select first device and start a movement

smd.Select("Device_0");

smd.Mode(2);

smd.MoveRelativeAsync(10000); // Execution continues to the next line of code immediately, regardless of

how long this move will

                                                    // requires to complete.

// Select second device and start a movement

smd.Select("Device_1");

smd.Mode(2);

smd.MoveRelativeAsync(5000);

// Both motors are completing their moves at the same time.

// Select device with name MyDevice

smd.Select("MyDevice");

// Store actual position in a variable

pact = smd.ActualPosition();

// Log result to command line

smd.Log(pact[0]);

// Select device with name MyDevice

smd.Select("MyDevice");

// Store status flags in a variable

status = smd.StatusFlags();

// Log a specific bit status of the selected device to the command line

if(status[0] = status[0] & (0x1 << 6)){

    smd.Log("Motor is in standby");

} else {    

    smd.Log("Motor is running");

}

Execute movement on multiple drives, illustrating synchronous and
asynchronous commands

Get value of actual position counter and log to command line

Check if the motor is in standby




	Software
	Installation and setup
	Overview
	Project panel
	Device properties panel
	System work area
	Controller window
	Ribbon

	Saving projects
	Scripting
	Function specific to the SMD4 software
	Example scripts
	Add device, rename and set device properties
	Execute a series of movements, illustrating synchronous move commands
	Execute movement on multiple drives, illustrating synchronous and asynchronous commands
	Get value of actual position counter and log to command line
	Check if the motor is in standby




